Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's carefully analyze the relationship between the two sets given in the problem.
First, we take a look at the two sets:
- Set [tex]\( A = \{-7, 6, 7 \} \)[/tex]
- Set [tex]\( B = \{-7, -6, 6, 7 \} \)[/tex]
To determine the correct subset relationship [tex]\( \subseteq \)[/tex] or [tex]\( \nsubseteq \)[/tex], we need to check if every element in [tex]\( A \)[/tex] is also in [tex]\( B \)[/tex].
### Step-by-Step Analysis:
1. Element [tex]\(-7\)[/tex]:
- [tex]\(-7\)[/tex] is in set [tex]\( A \)[/tex].
- [tex]\(-7\)[/tex] is also in set [tex]\( B \)[/tex].
2. Element [tex]\( 6 \)[/tex]:
- [tex]\( 6 \)[/tex] is in set [tex]\( A \)[/tex].
- [tex]\( 6 \)[/tex] is also in set [tex]\( B \)[/tex].
3. Element [tex]\( 7 \)[/tex]:
- [tex]\( 7 \)[/tex] is in set [tex]\( A \)[/tex].
- [tex]\( 7 \)[/tex] is also in set [tex]\( B \)[/tex].
Since all elements of set [tex]\( A \)[/tex] are present in set [tex]\( B \)[/tex], we have that:
[tex]\[ \{-7, 6, 7 \} \subseteq \{-7, -6, 6, 7\} \][/tex]
### Checking the Notion of Non-Subset:
By definition, since set [tex]\( A \)[/tex] is indeed a subset of set [tex]\( B \)[/tex], [tex]\(\{-7, 6, 7\} \nsubseteq \{-7, -6, 6, 7\}\)[/tex] is false.
### Final Answer:
Thus, the correct insertions for the blank in the statement are as follows:
[tex]\[ \{-7, 6, 7 \} \subseteq \{-7, -6, 6, 7\} \][/tex]
[tex]\[ \{-7, 6, 7 \} \nsubseteq \{-7, -6, 6, 7\}\][/tex]
So, we fill in the blanks:
1. [tex]\[ \{-7, 6, 7 \} \subseteq \{-7, -6, 6, 7\} \][/tex]
2. [tex]\[ \{-7, 6, 7 \} \nsubseteq \{-7, -6, 6, 7\} \][/tex]
First, we take a look at the two sets:
- Set [tex]\( A = \{-7, 6, 7 \} \)[/tex]
- Set [tex]\( B = \{-7, -6, 6, 7 \} \)[/tex]
To determine the correct subset relationship [tex]\( \subseteq \)[/tex] or [tex]\( \nsubseteq \)[/tex], we need to check if every element in [tex]\( A \)[/tex] is also in [tex]\( B \)[/tex].
### Step-by-Step Analysis:
1. Element [tex]\(-7\)[/tex]:
- [tex]\(-7\)[/tex] is in set [tex]\( A \)[/tex].
- [tex]\(-7\)[/tex] is also in set [tex]\( B \)[/tex].
2. Element [tex]\( 6 \)[/tex]:
- [tex]\( 6 \)[/tex] is in set [tex]\( A \)[/tex].
- [tex]\( 6 \)[/tex] is also in set [tex]\( B \)[/tex].
3. Element [tex]\( 7 \)[/tex]:
- [tex]\( 7 \)[/tex] is in set [tex]\( A \)[/tex].
- [tex]\( 7 \)[/tex] is also in set [tex]\( B \)[/tex].
Since all elements of set [tex]\( A \)[/tex] are present in set [tex]\( B \)[/tex], we have that:
[tex]\[ \{-7, 6, 7 \} \subseteq \{-7, -6, 6, 7\} \][/tex]
### Checking the Notion of Non-Subset:
By definition, since set [tex]\( A \)[/tex] is indeed a subset of set [tex]\( B \)[/tex], [tex]\(\{-7, 6, 7\} \nsubseteq \{-7, -6, 6, 7\}\)[/tex] is false.
### Final Answer:
Thus, the correct insertions for the blank in the statement are as follows:
[tex]\[ \{-7, 6, 7 \} \subseteq \{-7, -6, 6, 7\} \][/tex]
[tex]\[ \{-7, 6, 7 \} \nsubseteq \{-7, -6, 6, 7\}\][/tex]
So, we fill in the blanks:
1. [tex]\[ \{-7, 6, 7 \} \subseteq \{-7, -6, 6, 7\} \][/tex]
2. [tex]\[ \{-7, 6, 7 \} \nsubseteq \{-7, -6, 6, 7\} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.