Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's go through the detailed step-by-step solution to simplify the expression
[tex]\[ \left(\frac{4 a^2 b^{-5}}{6 a^{-1} b^{-4}}\right)^3 \][/tex]
### Step 1: Simplify the Coefficients
We start by simplifying the coefficients, which are the constants of the numerator and the denominator:
[tex]\[ \frac{4}{6} \][/tex]
This can be reduced by dividing both the numerator and the denominator by their greatest common divisor, which is 2:
[tex]\[ \frac{4}{6} = \frac{2}{3} \][/tex]
### Step 2: Simplify the Exponents for [tex]\( a \)[/tex]
Next, we handle the exponents of [tex]\( a \)[/tex]. In the numerator, the exponent of [tex]\( a \)[/tex] is 2, and in the denominator, the exponent of [tex]\( a \)[/tex] is -1. When dividing like bases, we subtract the exponents:
[tex]\[ a^{2 - (-1)} = a^{2 + 1} = a^3 \][/tex]
### Step 3: Simplify the Exponents for [tex]\( b \)[/tex]
Now, we simplify the exponents for [tex]\( b \)[/tex]. In the numerator, the exponent of [tex]\( b \)[/tex] is -5, and in the denominator, the exponent of [tex]\( b \)[/tex] is -4. When dividing like bases, we subtract the exponents:
[tex]\[ b^{-5 - (-4)} = b^{-5 + 4} = b^{-1} \][/tex]
### Step 4: Combine the Simplified Expressions
We now put our simplified results together:
[tex]\[ \frac{2}{3} \cdot a^3 \cdot b^{-1} \][/tex]
### Step 5: Raise to the Power of 3
Next, we need to raise the entire expression to the power of 3:
[tex]\[ \left(\frac{2}{3} \cdot a^3 \cdot b^{-1}\right)^3 \][/tex]
### Step 6: Apply Exponent to Each Component
We apply the exponent of 3 to each part of the expression separately:
#### Coefficient:
[tex]\[ \left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27} \][/tex]
#### Exponent for [tex]\( a \)[/tex]:
[tex]\[ (a^3)^3 = a^{3 \cdot 3} = a^9 \][/tex]
#### Exponent for [tex]\( b \)[/tex]:
[tex]\[ (b^{-1})^3 = b^{-1 \cdot 3} = b^{-3} \][/tex]
### Step 7: Combine Final Expression
Putting it all together, the simplified form is:
[tex]\[ \frac{8}{27} \cdot a^9 \cdot b^{-3} \][/tex]
Or more concisely:
[tex]\[ \frac{8 a^9}{27 b^3} \][/tex]
In decimal form, the constant coefficient is approximately [tex]\( 0.2962962962962962 \)[/tex]. Thus, expressed in a different format, the final simplified expression is:
[tex]\[ 0.2962962962962962 \cdot a^9 \cdot b^{-3} \][/tex]
And there you have the complete, detailed solution!
[tex]\[ \left(\frac{4 a^2 b^{-5}}{6 a^{-1} b^{-4}}\right)^3 \][/tex]
### Step 1: Simplify the Coefficients
We start by simplifying the coefficients, which are the constants of the numerator and the denominator:
[tex]\[ \frac{4}{6} \][/tex]
This can be reduced by dividing both the numerator and the denominator by their greatest common divisor, which is 2:
[tex]\[ \frac{4}{6} = \frac{2}{3} \][/tex]
### Step 2: Simplify the Exponents for [tex]\( a \)[/tex]
Next, we handle the exponents of [tex]\( a \)[/tex]. In the numerator, the exponent of [tex]\( a \)[/tex] is 2, and in the denominator, the exponent of [tex]\( a \)[/tex] is -1. When dividing like bases, we subtract the exponents:
[tex]\[ a^{2 - (-1)} = a^{2 + 1} = a^3 \][/tex]
### Step 3: Simplify the Exponents for [tex]\( b \)[/tex]
Now, we simplify the exponents for [tex]\( b \)[/tex]. In the numerator, the exponent of [tex]\( b \)[/tex] is -5, and in the denominator, the exponent of [tex]\( b \)[/tex] is -4. When dividing like bases, we subtract the exponents:
[tex]\[ b^{-5 - (-4)} = b^{-5 + 4} = b^{-1} \][/tex]
### Step 4: Combine the Simplified Expressions
We now put our simplified results together:
[tex]\[ \frac{2}{3} \cdot a^3 \cdot b^{-1} \][/tex]
### Step 5: Raise to the Power of 3
Next, we need to raise the entire expression to the power of 3:
[tex]\[ \left(\frac{2}{3} \cdot a^3 \cdot b^{-1}\right)^3 \][/tex]
### Step 6: Apply Exponent to Each Component
We apply the exponent of 3 to each part of the expression separately:
#### Coefficient:
[tex]\[ \left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27} \][/tex]
#### Exponent for [tex]\( a \)[/tex]:
[tex]\[ (a^3)^3 = a^{3 \cdot 3} = a^9 \][/tex]
#### Exponent for [tex]\( b \)[/tex]:
[tex]\[ (b^{-1})^3 = b^{-1 \cdot 3} = b^{-3} \][/tex]
### Step 7: Combine Final Expression
Putting it all together, the simplified form is:
[tex]\[ \frac{8}{27} \cdot a^9 \cdot b^{-3} \][/tex]
Or more concisely:
[tex]\[ \frac{8 a^9}{27 b^3} \][/tex]
In decimal form, the constant coefficient is approximately [tex]\( 0.2962962962962962 \)[/tex]. Thus, expressed in a different format, the final simplified expression is:
[tex]\[ 0.2962962962962962 \cdot a^9 \cdot b^{-3} \][/tex]
And there you have the complete, detailed solution!
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.