Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine where [tex]\(\tan \theta\)[/tex] is undefined on the unit circle for [tex]\(0 \leq \theta \leq 2\pi\)[/tex], we need to understand the definition of the tangent function in terms of sine and cosine:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
For the tangent function to be undefined, the denominator (the cosine of the angle) must be zero. Thus, we need to find the values of [tex]\(\theta\)[/tex] for which [tex]\(\cos \theta = 0\)[/tex].
On the unit circle, the cosine of an angle is the x-coordinate of the corresponding point. The cosine function is zero at two specific angles within one full rotation [tex]\([0, 2\pi]\)[/tex]:
1. [tex]\(\theta = \frac{\pi}{2}\)[/tex]
2. [tex]\(\theta = \frac{3\pi}{2}\)[/tex]
At these angles, the sine function [tex]\(\sin \theta\)[/tex] is either [tex]\(1\)[/tex] or [tex]\(-1\)[/tex] respectively, but the cosine function [tex]\(\cos \theta\)[/tex] is zero, making the tangent function [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex] undefined.
Therefore, the values of [tex]\(\theta\)[/tex] at which [tex]\(\tan \theta\)[/tex] is undefined are:
[tex]\[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{3\pi}{2} \][/tex]
So, the correct answer is [tex]\(\theta=\frac{\pi}{2}\)[/tex] and [tex]\(\theta=\frac{3\pi}{2}\)[/tex].
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
For the tangent function to be undefined, the denominator (the cosine of the angle) must be zero. Thus, we need to find the values of [tex]\(\theta\)[/tex] for which [tex]\(\cos \theta = 0\)[/tex].
On the unit circle, the cosine of an angle is the x-coordinate of the corresponding point. The cosine function is zero at two specific angles within one full rotation [tex]\([0, 2\pi]\)[/tex]:
1. [tex]\(\theta = \frac{\pi}{2}\)[/tex]
2. [tex]\(\theta = \frac{3\pi}{2}\)[/tex]
At these angles, the sine function [tex]\(\sin \theta\)[/tex] is either [tex]\(1\)[/tex] or [tex]\(-1\)[/tex] respectively, but the cosine function [tex]\(\cos \theta\)[/tex] is zero, making the tangent function [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex] undefined.
Therefore, the values of [tex]\(\theta\)[/tex] at which [tex]\(\tan \theta\)[/tex] is undefined are:
[tex]\[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{3\pi}{2} \][/tex]
So, the correct answer is [tex]\(\theta=\frac{\pi}{2}\)[/tex] and [tex]\(\theta=\frac{3\pi}{2}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.