At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the intersection of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we need to identify the elements that are common to both sets.
We start with set [tex]\( A \)[/tex]:
[tex]\[ A = \{2, 4, 6, 8, 10, 12\} \][/tex]
Next, we look at set [tex]\( B \)[/tex]:
[tex]\[ B = \{3, 6, 9, 12, 15\} \][/tex]
Now, we check each element of set [tex]\( A \)[/tex] to see if it is also in set [tex]\( B \)[/tex].
1. The element 2 is in [tex]\( A \)[/tex], but not in [tex]\( B \)[/tex].
2. The element 4 is in [tex]\( A \)[/tex], but not in [tex]\( B \)[/tex].
3. The element 6 is in [tex]\( A \)[/tex] and also in [tex]\( B \)[/tex].
4. The element 8 is in [tex]\( A \)[/tex], but not in [tex]\( B \)[/tex].
5. The element 10 is in [tex]\( A \)[/tex], but not in [tex]\( B \)[/tex].
6. The element 12 is in [tex]\( A \)[/tex] and also in [tex]\( B \)[/tex].
From this, we see that the common elements are 6 and 12.
Therefore, the intersection of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ A \cap B = \{12, 6\} \][/tex]
So, the result of the intersection [tex]\( A \cap B \)[/tex] is:
[tex]\[ \boxed{[12, 6]} \][/tex]
We start with set [tex]\( A \)[/tex]:
[tex]\[ A = \{2, 4, 6, 8, 10, 12\} \][/tex]
Next, we look at set [tex]\( B \)[/tex]:
[tex]\[ B = \{3, 6, 9, 12, 15\} \][/tex]
Now, we check each element of set [tex]\( A \)[/tex] to see if it is also in set [tex]\( B \)[/tex].
1. The element 2 is in [tex]\( A \)[/tex], but not in [tex]\( B \)[/tex].
2. The element 4 is in [tex]\( A \)[/tex], but not in [tex]\( B \)[/tex].
3. The element 6 is in [tex]\( A \)[/tex] and also in [tex]\( B \)[/tex].
4. The element 8 is in [tex]\( A \)[/tex], but not in [tex]\( B \)[/tex].
5. The element 10 is in [tex]\( A \)[/tex], but not in [tex]\( B \)[/tex].
6. The element 12 is in [tex]\( A \)[/tex] and also in [tex]\( B \)[/tex].
From this, we see that the common elements are 6 and 12.
Therefore, the intersection of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ A \cap B = \{12, 6\} \][/tex]
So, the result of the intersection [tex]\( A \cap B \)[/tex] is:
[tex]\[ \boxed{[12, 6]} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.