At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the given problem, we need to perform several steps:
Step 1: Locate the critical points of the function [tex]\( f(x) = 2x^3 + 3x^2 - 72x + 9 \)[/tex].
To find the critical points, we need to calculate the first derivative of the function and set it to zero:
[tex]\[ f'(x) = \frac{d}{dx} (2x^3 + 3x^2 - 72x + 9) \][/tex]
Calculating the first derivative:
[tex]\[ f'(x) = 6x^2 + 6x - 72 \][/tex]
Next, we set the first derivative equal to zero to find the critical points:
[tex]\[ 6x^2 + 6x - 72 = 0 \][/tex]
Solving this quadratic equation:
[tex]\[ x^2 + x - 12 = 0 \][/tex]
Factoring the quadratic equation:
[tex]\[ (x + 4)(x - 3) = 0 \][/tex]
So, the critical points are:
[tex]\[ x = -4 \quad \text{and} \quad x = 3 \][/tex]
Therefore, the correct choice for part (a) is:
A. The critical point(s) is/are at [tex]\( x = -4, 3 \)[/tex].
Step 2: Use the First Derivative Test to locate the local maximum and minimum values.
To determine whether each critical point is a local maximum or minimum, we evaluate the sign of the first derivative around the critical points.
1. For [tex]\( x = -4 \)[/tex]:
- Pick a test point less than [tex]\(-4\)[/tex], say [tex]\( x = -5 \)[/tex]:
[tex]\[ f'(-5) = 6(-5)^2 + 6(-5) - 72 = 150 - 30 - 72 = 48 \][/tex] (positive)
- Pick a test point greater than [tex]\(-4\)[/tex], say [tex]\( x = -3 \)[/tex]:
[tex]\[ f'(-3) = 6(-3)^2 + 6(-3) - 72 = 54 - 18 - 72 = -36 \][/tex] (negative)
Since the first derivative changes from positive to negative, [tex]\( x = -4 \)[/tex] is a local maximum.
2. For [tex]\( x = 3 \)[/tex]:
- Pick a test point less than [tex]\( 3 \)[/tex], say [tex]\( x = 2 \)[/tex]:
[tex]\[ f'(2) = 6(2)^2 + 6(2) - 72 = 24 + 12 - 72 = -36 \][/tex] (negative)
- Pick a test point greater than [tex]\( 3 \)[/tex], say [tex]\( x = 4 \)[/tex]:
[tex]\[ f'(4) = 6(4)^2 + 6(4) - 72 = 96 + 24 - 72 = 48 \][/tex] (positive)
Since the first derivative changes from negative to positive, [tex]\( x = 3 \)[/tex] is a local minimum.
Therefore, the correct choice for part (b) is:
A. There is a local maximum at [tex]\( x = -4 \)[/tex].
Step 1: Locate the critical points of the function [tex]\( f(x) = 2x^3 + 3x^2 - 72x + 9 \)[/tex].
To find the critical points, we need to calculate the first derivative of the function and set it to zero:
[tex]\[ f'(x) = \frac{d}{dx} (2x^3 + 3x^2 - 72x + 9) \][/tex]
Calculating the first derivative:
[tex]\[ f'(x) = 6x^2 + 6x - 72 \][/tex]
Next, we set the first derivative equal to zero to find the critical points:
[tex]\[ 6x^2 + 6x - 72 = 0 \][/tex]
Solving this quadratic equation:
[tex]\[ x^2 + x - 12 = 0 \][/tex]
Factoring the quadratic equation:
[tex]\[ (x + 4)(x - 3) = 0 \][/tex]
So, the critical points are:
[tex]\[ x = -4 \quad \text{and} \quad x = 3 \][/tex]
Therefore, the correct choice for part (a) is:
A. The critical point(s) is/are at [tex]\( x = -4, 3 \)[/tex].
Step 2: Use the First Derivative Test to locate the local maximum and minimum values.
To determine whether each critical point is a local maximum or minimum, we evaluate the sign of the first derivative around the critical points.
1. For [tex]\( x = -4 \)[/tex]:
- Pick a test point less than [tex]\(-4\)[/tex], say [tex]\( x = -5 \)[/tex]:
[tex]\[ f'(-5) = 6(-5)^2 + 6(-5) - 72 = 150 - 30 - 72 = 48 \][/tex] (positive)
- Pick a test point greater than [tex]\(-4\)[/tex], say [tex]\( x = -3 \)[/tex]:
[tex]\[ f'(-3) = 6(-3)^2 + 6(-3) - 72 = 54 - 18 - 72 = -36 \][/tex] (negative)
Since the first derivative changes from positive to negative, [tex]\( x = -4 \)[/tex] is a local maximum.
2. For [tex]\( x = 3 \)[/tex]:
- Pick a test point less than [tex]\( 3 \)[/tex], say [tex]\( x = 2 \)[/tex]:
[tex]\[ f'(2) = 6(2)^2 + 6(2) - 72 = 24 + 12 - 72 = -36 \][/tex] (negative)
- Pick a test point greater than [tex]\( 3 \)[/tex], say [tex]\( x = 4 \)[/tex]:
[tex]\[ f'(4) = 6(4)^2 + 6(4) - 72 = 96 + 24 - 72 = 48 \][/tex] (positive)
Since the first derivative changes from negative to positive, [tex]\( x = 3 \)[/tex] is a local minimum.
Therefore, the correct choice for part (b) is:
A. There is a local maximum at [tex]\( x = -4 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.