At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's solve the problem step by step.
### Given:
- Skewness ([tex]\( g_1 \)[/tex]): 0.5
- Coefficient of Variation (CV): [tex]\( 40\% \)[/tex]
- Mode ([tex]\( M \)[/tex]): 80
First, let's convert the percentage of the coefficient of variation into a decimal form:
[tex]\[ CV = 40\% = 0.4 \][/tex]
The Pearson coefficient of skewness formula for finding the mean ([tex]\( \mu \)[/tex]) using mode ([tex]\( M \)[/tex]) is given by:
[tex]\[ \text{Skewness} = 3 \times \frac{\mu - M}{\sigma} \][/tex]
where [tex]\( \sigma \)[/tex] is the standard deviation.
Additionally, the coefficient of variation (CV) relates the standard deviation and the mean as follows:
[tex]\[ CV = \frac{\sigma}{\mu} \][/tex]
From the given data:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{\sigma} \][/tex]
[tex]\[ CV = 0.4 = \frac{\sigma}{\mu} \][/tex]
We need to solve for the mean ([tex]\( \mu \)[/tex]). Let's first express [tex]\(\sigma\)[/tex] from the coefficient of variation formula:
[tex]\[ \sigma = 0.4 \mu \][/tex]
Substituting [tex]\(\sigma = 0.4 \mu\)[/tex] into the skewness equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
Rewriting this equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{3 (\mu - 80)}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{7.5 (\mu - 80)}{\mu} \][/tex]
Multiply both sides of the equation by [tex]\(\mu\)[/tex]:
[tex]\[ 0.5 \mu = 7.5 (\mu - 80) \][/tex]
Distribute and simplify:
[tex]\[ 0.5 \mu = 7.5 \mu - 600 \][/tex]
To isolate [tex]\(\mu\)[/tex], combine like terms by moving all terms involving [tex]\(\mu\)[/tex] to one side of the equation:
[tex]\[ 0.5 \mu - 7.5 \mu = -600 \][/tex]
[tex]\[ -7 \mu = -600 \][/tex]
Divide both sides by -7:
[tex]\[ \mu = \frac{600}{7} \][/tex]
[tex]\[ \mu \approx 85.714 \][/tex]
Thus, the mean ([tex]\( \mu \)[/tex]) of the distribution is approximately [tex]\( 85.714 \)[/tex]. The mode ([tex]\( M \)[/tex]) is given as 80.
### Final answer:
- Mean ([tex]\( \mu \)[/tex]): approximately [tex]\( 85.714 \)[/tex]
- Mode ([tex]\( M \)[/tex]): [tex]\( 80 \)[/tex]
These values satisfy the conditions provided in the problem statement.
### Given:
- Skewness ([tex]\( g_1 \)[/tex]): 0.5
- Coefficient of Variation (CV): [tex]\( 40\% \)[/tex]
- Mode ([tex]\( M \)[/tex]): 80
First, let's convert the percentage of the coefficient of variation into a decimal form:
[tex]\[ CV = 40\% = 0.4 \][/tex]
The Pearson coefficient of skewness formula for finding the mean ([tex]\( \mu \)[/tex]) using mode ([tex]\( M \)[/tex]) is given by:
[tex]\[ \text{Skewness} = 3 \times \frac{\mu - M}{\sigma} \][/tex]
where [tex]\( \sigma \)[/tex] is the standard deviation.
Additionally, the coefficient of variation (CV) relates the standard deviation and the mean as follows:
[tex]\[ CV = \frac{\sigma}{\mu} \][/tex]
From the given data:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{\sigma} \][/tex]
[tex]\[ CV = 0.4 = \frac{\sigma}{\mu} \][/tex]
We need to solve for the mean ([tex]\( \mu \)[/tex]). Let's first express [tex]\(\sigma\)[/tex] from the coefficient of variation formula:
[tex]\[ \sigma = 0.4 \mu \][/tex]
Substituting [tex]\(\sigma = 0.4 \mu\)[/tex] into the skewness equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
Rewriting this equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{3 (\mu - 80)}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{7.5 (\mu - 80)}{\mu} \][/tex]
Multiply both sides of the equation by [tex]\(\mu\)[/tex]:
[tex]\[ 0.5 \mu = 7.5 (\mu - 80) \][/tex]
Distribute and simplify:
[tex]\[ 0.5 \mu = 7.5 \mu - 600 \][/tex]
To isolate [tex]\(\mu\)[/tex], combine like terms by moving all terms involving [tex]\(\mu\)[/tex] to one side of the equation:
[tex]\[ 0.5 \mu - 7.5 \mu = -600 \][/tex]
[tex]\[ -7 \mu = -600 \][/tex]
Divide both sides by -7:
[tex]\[ \mu = \frac{600}{7} \][/tex]
[tex]\[ \mu \approx 85.714 \][/tex]
Thus, the mean ([tex]\( \mu \)[/tex]) of the distribution is approximately [tex]\( 85.714 \)[/tex]. The mode ([tex]\( M \)[/tex]) is given as 80.
### Final answer:
- Mean ([tex]\( \mu \)[/tex]): approximately [tex]\( 85.714 \)[/tex]
- Mode ([tex]\( M \)[/tex]): [tex]\( 80 \)[/tex]
These values satisfy the conditions provided in the problem statement.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.