Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's solve the problem step by step.
### Given:
- Skewness ([tex]\( g_1 \)[/tex]): 0.5
- Coefficient of Variation (CV): [tex]\( 40\% \)[/tex]
- Mode ([tex]\( M \)[/tex]): 80
First, let's convert the percentage of the coefficient of variation into a decimal form:
[tex]\[ CV = 40\% = 0.4 \][/tex]
The Pearson coefficient of skewness formula for finding the mean ([tex]\( \mu \)[/tex]) using mode ([tex]\( M \)[/tex]) is given by:
[tex]\[ \text{Skewness} = 3 \times \frac{\mu - M}{\sigma} \][/tex]
where [tex]\( \sigma \)[/tex] is the standard deviation.
Additionally, the coefficient of variation (CV) relates the standard deviation and the mean as follows:
[tex]\[ CV = \frac{\sigma}{\mu} \][/tex]
From the given data:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{\sigma} \][/tex]
[tex]\[ CV = 0.4 = \frac{\sigma}{\mu} \][/tex]
We need to solve for the mean ([tex]\( \mu \)[/tex]). Let's first express [tex]\(\sigma\)[/tex] from the coefficient of variation formula:
[tex]\[ \sigma = 0.4 \mu \][/tex]
Substituting [tex]\(\sigma = 0.4 \mu\)[/tex] into the skewness equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
Rewriting this equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{3 (\mu - 80)}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{7.5 (\mu - 80)}{\mu} \][/tex]
Multiply both sides of the equation by [tex]\(\mu\)[/tex]:
[tex]\[ 0.5 \mu = 7.5 (\mu - 80) \][/tex]
Distribute and simplify:
[tex]\[ 0.5 \mu = 7.5 \mu - 600 \][/tex]
To isolate [tex]\(\mu\)[/tex], combine like terms by moving all terms involving [tex]\(\mu\)[/tex] to one side of the equation:
[tex]\[ 0.5 \mu - 7.5 \mu = -600 \][/tex]
[tex]\[ -7 \mu = -600 \][/tex]
Divide both sides by -7:
[tex]\[ \mu = \frac{600}{7} \][/tex]
[tex]\[ \mu \approx 85.714 \][/tex]
Thus, the mean ([tex]\( \mu \)[/tex]) of the distribution is approximately [tex]\( 85.714 \)[/tex]. The mode ([tex]\( M \)[/tex]) is given as 80.
### Final answer:
- Mean ([tex]\( \mu \)[/tex]): approximately [tex]\( 85.714 \)[/tex]
- Mode ([tex]\( M \)[/tex]): [tex]\( 80 \)[/tex]
These values satisfy the conditions provided in the problem statement.
### Given:
- Skewness ([tex]\( g_1 \)[/tex]): 0.5
- Coefficient of Variation (CV): [tex]\( 40\% \)[/tex]
- Mode ([tex]\( M \)[/tex]): 80
First, let's convert the percentage of the coefficient of variation into a decimal form:
[tex]\[ CV = 40\% = 0.4 \][/tex]
The Pearson coefficient of skewness formula for finding the mean ([tex]\( \mu \)[/tex]) using mode ([tex]\( M \)[/tex]) is given by:
[tex]\[ \text{Skewness} = 3 \times \frac{\mu - M}{\sigma} \][/tex]
where [tex]\( \sigma \)[/tex] is the standard deviation.
Additionally, the coefficient of variation (CV) relates the standard deviation and the mean as follows:
[tex]\[ CV = \frac{\sigma}{\mu} \][/tex]
From the given data:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{\sigma} \][/tex]
[tex]\[ CV = 0.4 = \frac{\sigma}{\mu} \][/tex]
We need to solve for the mean ([tex]\( \mu \)[/tex]). Let's first express [tex]\(\sigma\)[/tex] from the coefficient of variation formula:
[tex]\[ \sigma = 0.4 \mu \][/tex]
Substituting [tex]\(\sigma = 0.4 \mu\)[/tex] into the skewness equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
Rewriting this equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{3 (\mu - 80)}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{7.5 (\mu - 80)}{\mu} \][/tex]
Multiply both sides of the equation by [tex]\(\mu\)[/tex]:
[tex]\[ 0.5 \mu = 7.5 (\mu - 80) \][/tex]
Distribute and simplify:
[tex]\[ 0.5 \mu = 7.5 \mu - 600 \][/tex]
To isolate [tex]\(\mu\)[/tex], combine like terms by moving all terms involving [tex]\(\mu\)[/tex] to one side of the equation:
[tex]\[ 0.5 \mu - 7.5 \mu = -600 \][/tex]
[tex]\[ -7 \mu = -600 \][/tex]
Divide both sides by -7:
[tex]\[ \mu = \frac{600}{7} \][/tex]
[tex]\[ \mu \approx 85.714 \][/tex]
Thus, the mean ([tex]\( \mu \)[/tex]) of the distribution is approximately [tex]\( 85.714 \)[/tex]. The mode ([tex]\( M \)[/tex]) is given as 80.
### Final answer:
- Mean ([tex]\( \mu \)[/tex]): approximately [tex]\( 85.714 \)[/tex]
- Mode ([tex]\( M \)[/tex]): [tex]\( 80 \)[/tex]
These values satisfy the conditions provided in the problem statement.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.