Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which of the given expressions are equivalent to [tex]\(6^{-3}\)[/tex], let's proceed step-by-step.
First, we need to understand what [tex]\(6^{-3}\)[/tex] means:
[tex]\[ 6^{-3} \][/tex]
Using the exponent rule [tex]\(a^{-b} = \frac{1}{a^b}\)[/tex], we can rewrite [tex]\(6^{-3}\)[/tex] as:
[tex]\[ 6^{-3} = \frac{1}{6^3} \][/tex]
Now, let's evaluate the given expressions individually to see which ones match [tex]\( \frac{1}{6^3} \)[/tex].
1. [tex]\(\frac{1}{6^3}\)[/tex]:
[tex]\[ \frac{1}{6^3} = \frac{1}{6^3} \][/tex]
This is directly equivalent to the rewritten form of [tex]\(6^{-3}\)[/tex].
2. [tex]\(\frac{1}{6^{-3}}\)[/tex]:
[tex]\[ \frac{1}{6^{-3}} = \frac{1}{\frac{1}{6^3}} = 6^3 \][/tex]
This is not equivalent to [tex]\(6^{-3}\)[/tex].
3. [tex]\(\frac{1}{-216}\)[/tex]:
[tex]\[ \frac{1}{-216} \][/tex]
The value [tex]\(-216\)[/tex] is not related to [tex]\(6^3\)[/tex] (which is [tex]\(216\)[/tex]), so this expression is not equivalent to [tex]\(6^{-3}\)[/tex].
4. [tex]\(\frac{1}{216}\)[/tex]:
[tex]\[ 6^3 = 216 \implies \frac{1}{6^3} = \frac{1}{216} \][/tex]
This is equivalent to the rewritten form of [tex]\(6^{-3}\)[/tex].
So, the equivalent expressions to [tex]\(6^{-3}\)[/tex] are:
- [tex]\(\frac{1}{6^3}\)[/tex]
- [tex]\(\frac{1}{216}\)[/tex]
Therefore, the expressions equivalent to [tex]\(6^{-3}\)[/tex] are: [tex]\(\frac{1}{6^3}\)[/tex] and [tex]\(\frac{1}{216}\)[/tex].
First, we need to understand what [tex]\(6^{-3}\)[/tex] means:
[tex]\[ 6^{-3} \][/tex]
Using the exponent rule [tex]\(a^{-b} = \frac{1}{a^b}\)[/tex], we can rewrite [tex]\(6^{-3}\)[/tex] as:
[tex]\[ 6^{-3} = \frac{1}{6^3} \][/tex]
Now, let's evaluate the given expressions individually to see which ones match [tex]\( \frac{1}{6^3} \)[/tex].
1. [tex]\(\frac{1}{6^3}\)[/tex]:
[tex]\[ \frac{1}{6^3} = \frac{1}{6^3} \][/tex]
This is directly equivalent to the rewritten form of [tex]\(6^{-3}\)[/tex].
2. [tex]\(\frac{1}{6^{-3}}\)[/tex]:
[tex]\[ \frac{1}{6^{-3}} = \frac{1}{\frac{1}{6^3}} = 6^3 \][/tex]
This is not equivalent to [tex]\(6^{-3}\)[/tex].
3. [tex]\(\frac{1}{-216}\)[/tex]:
[tex]\[ \frac{1}{-216} \][/tex]
The value [tex]\(-216\)[/tex] is not related to [tex]\(6^3\)[/tex] (which is [tex]\(216\)[/tex]), so this expression is not equivalent to [tex]\(6^{-3}\)[/tex].
4. [tex]\(\frac{1}{216}\)[/tex]:
[tex]\[ 6^3 = 216 \implies \frac{1}{6^3} = \frac{1}{216} \][/tex]
This is equivalent to the rewritten form of [tex]\(6^{-3}\)[/tex].
So, the equivalent expressions to [tex]\(6^{-3}\)[/tex] are:
- [tex]\(\frac{1}{6^3}\)[/tex]
- [tex]\(\frac{1}{216}\)[/tex]
Therefore, the expressions equivalent to [tex]\(6^{-3}\)[/tex] are: [tex]\(\frac{1}{6^3}\)[/tex] and [tex]\(\frac{1}{216}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.