At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i) [tex]x^2 - 2x - 8[/tex]

(ii) [tex]4s^2 + 4s + 16[/tex]

(iii) [tex]6x^2 - 7x - 3[/tex]


Sagot :

Let's find the zeroes of each quadratic polynomial and verify the relationship between the zeroes and the coefficients.

### (i) [tex]\( x^2 - 2x - 8 \)[/tex]

1. Find the zeroes:
The quadratic equation is [tex]\( x^2 - 2x - 8 = 0 \)[/tex]. To find the zeroes, we solve:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -8 \)[/tex].

Solving, we get:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 32}}{2} = \frac{2 \pm 6}{2} \][/tex]
So, the zeroes are:
[tex]\[ x = \frac{2 + 6}{2} = 4 \quad \text{and} \quad x = \frac{2 - 6}{2} = -2 \][/tex]
Thus, the zeroes are [tex]\( x = 4 \)[/tex] and [tex]\( x = -2 \)[/tex].

2. Verify the relationship between the zeroes and coefficients:
- The sum of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) of [tex]\( ax^2 + bx + c = 0 \)[/tex] should be [tex]\( -\frac{b}{a} \)[/tex]:
[tex]\[ \alpha + \beta = - \frac{b}{a} = -\frac{-2}{1} = 2 \][/tex]
Here, the sum is [tex]\( 4 + (-2) = 2 \)[/tex], so it matches.

- The product of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) should be [tex]\( \frac{c}{a} \)[/tex]:
[tex]\[ \alpha \beta = \frac{c}{a} = \frac{-8}{1} = -8 \][/tex]
The product is [tex]\( 4 \times (-2) = -8 \)[/tex], so it matches.

So, for [tex]\( x^2 - 2x - 8 \)[/tex]:
- Zeroes: [tex]\( 4 \)[/tex] and [tex]\( -2 \)[/tex]
- Sum of zeroes: [tex]\( 2 \)[/tex]
- Product of zeroes: [tex]\( -8 \)[/tex]

### (ii) [tex]\( 4s^2r^4 + 4s + 16 \)[/tex]

1. Find the zeroes:
The quadratic equation is [tex]\( 4s^2r^4 + 4s + 16 = 0 \)[/tex].
Solving for [tex]\( s \)[/tex]:
[tex]\[ s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 4r^4 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = 16 \)[/tex].

Solving, we get:
[tex]\[ s = \frac{-4 \pm \sqrt{16 - 256r^4}}{8r^4} = \frac{-4 \pm \sqrt{4(1 - 16r^4)}}{8r^4} = \frac{-4 \pm 2\sqrt{1 - 16r^4}}{8r^4} = \frac{-2 \pm \sqrt{1 - 16r^4}}{4r^4} \][/tex]
So, the zeroes are:
[tex]\[ s = \frac{-2 + \sqrt{1 - 16r^4}}{4r^4} \quad \text{and} \quad s = \frac{-2 - \sqrt{1 - 16r^4}}{4r^4} \][/tex]

Thus, the zeroes are:
[tex]\[ \left( \frac{-\sqrt{1 - 16r^4} - 1}{2r^4}, \frac{\sqrt{1 - 16r^4} - 1}{2r^4} \right) \][/tex]

### (iii) [tex]\( 6x^2 - 3 - 7x \)[/tex]

1. Find the zeroes:
The quadratic equation is [tex]\( 6x^2 - 3 - 7x = 0 \)[/tex]. Rearranging it to standard form, we get [tex]\( 6x^2 - 7x - 3 = 0 \)[/tex].
Here, [tex]\( a = 6 \)[/tex], [tex]\( b = -7 \)[/tex], and [tex]\( c = -3 \)[/tex].

Solving, we get:
[tex]\[ x = \frac{7 \pm \sqrt{49 + 72}}{12} = \frac{7 \pm \sqrt{121}}{12} = \frac{7 \pm 11}{12} \][/tex]

So, the zeroes are:
[tex]\[ x = \frac{7 + 11}{12} = \frac{18}{12} = \frac{3}{2} \quad \text{and} \quad x = \frac{7 - 11}{12} = \frac{-4}{12} = -\frac{1}{3} \][/tex]
Thus, the zeroes are [tex]\( x = \frac{3}{2} \)[/tex] and [tex]\( x = -\frac{1}{3} \)[/tex].

2. Verify the relationship between the zeroes and coefficients:
- The sum of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) should be [tex]\( -\frac{b}{a} \)[/tex]:
[tex]\[ \alpha + \beta = - \frac{b}{a} = -\frac{-7}{6} = \frac{7}{6} \][/tex]
Here, the sum is [tex]\( \frac{3}{2} + \left(-\frac{1}{3}\right) = \frac{9}{6} - \frac{2}{6} = \frac{7}{6} \)[/tex], so it matches.

- The product of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) should be [tex]\( \frac{c}{a} \)[/tex]:
[tex]\[ \alpha \beta = \frac{c}{a} = \frac{-3}{6} = -\frac{1}{2} \][/tex]
The product is [tex]\( \left(\frac{3}{2}\right) \times \left(-\frac{1}{3}\right) = -\frac{3}{6} = -\frac{1}{2} \)[/tex], so it matches.

So, for [tex]\( 6x^2 - 3 - 7x \)[/tex]:
- Zeroes: [tex]\( \frac{3}{2} \)[/tex] and [tex]\( -\frac{1}{3} \)[/tex]
- Sum of zeroes: [tex]\( \frac{7}{6} \)[/tex]
- Product of zeroes: [tex]\( -\frac{1}{2} \)[/tex]

In summary:

1. For [tex]\( x^2 - 2x - 8 \)[/tex]:
- Zeroes: [tex]\(4\)[/tex] and [tex]\(-2\)[/tex]
- Sum of zeroes: [tex]\(2\)[/tex]
- Product of zeroes: [tex]\(-8\)[/tex]

2. For [tex]\( 4s^2r^4 + 4s + 16 \)[/tex]:
- Zeroes: [tex]\(\left(\frac{-\sqrt{1 - 16r^4} - 1}{2r^4}, \frac{\sqrt{1 - 16r^4} - 1}{2r^4}\right)\)[/tex]

3. For [tex]\( 6x^2 - 3 - 7x \)[/tex]:
- Zeroes: [tex]\(\frac{3}{2}\)[/tex] and [tex]\(-\frac{1}{3}\)[/tex]
- Sum of zeroes: [tex]\(\frac{7}{6}\)[/tex]
- Product of zeroes: [tex]\(-\frac{1}{2}\)[/tex]