Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To analyze the continuity of the function [tex]\( f(x) \)[/tex] at [tex]\( x = 0 \)[/tex], we need to determine if the left-hand limit as [tex]\( x \)[/tex] approaches 0, the right-hand limit as [tex]\( x \)[/tex] approaches 0, and the value of the function at [tex]\( x = 0 \)[/tex] are all equal.
Given the function:
[tex]\[ f(x) = \begin{cases} \frac{e^x - 1 - x}{x^2}, & \text{if } x \neq 0 \\ \frac{1}{2}, & \text{if } x = 0 \end{cases} \][/tex]
1. Compute the left-hand limit as [tex]\( x \to 0 \)[/tex]:
We need to find the limit of [tex]\( \frac{e^x - 1 - x}{x^2} \)[/tex] as [tex]\( x \)[/tex] approaches 0. Therefore, we calculate:
[tex]\[ \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} \][/tex]
This limit can be evaluated using L'Hôpital's rule. Applying L'Hôpital's rule twice (since both the numerator and denominator approach 0 as [tex]\( x \to 0 \)[/tex]):
First application:
[tex]\[ \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2} \][/tex]
Thus, we have:
[tex]\[ \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2} \][/tex]
2. Determine the right-hand limit at [tex]\( x = 0 \)[/tex]:
From the definition of the function [tex]\( f \)[/tex] when [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{1}{2} \][/tex]
3. Check the continuity condition:
To check the continuity at [tex]\( x = 0 \)[/tex], we need to verify if:
[tex]\[ \lim_{x \to 0} f(x) = f(0) \][/tex]
From our computations:
[tex]\[ \lim_{x \to 0} f(x) = \frac{1}{2} = f(0) \][/tex]
Since both the left-hand limit and the right-hand limit as [tex]\( x \)[/tex] approaches 0 are equal to [tex]\( f(0) \)[/tex], we conclude that [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 0 \)[/tex].
Thus, the function [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 0 \)[/tex].
Given the function:
[tex]\[ f(x) = \begin{cases} \frac{e^x - 1 - x}{x^2}, & \text{if } x \neq 0 \\ \frac{1}{2}, & \text{if } x = 0 \end{cases} \][/tex]
1. Compute the left-hand limit as [tex]\( x \to 0 \)[/tex]:
We need to find the limit of [tex]\( \frac{e^x - 1 - x}{x^2} \)[/tex] as [tex]\( x \)[/tex] approaches 0. Therefore, we calculate:
[tex]\[ \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} \][/tex]
This limit can be evaluated using L'Hôpital's rule. Applying L'Hôpital's rule twice (since both the numerator and denominator approach 0 as [tex]\( x \to 0 \)[/tex]):
First application:
[tex]\[ \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2} \][/tex]
Thus, we have:
[tex]\[ \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2} \][/tex]
2. Determine the right-hand limit at [tex]\( x = 0 \)[/tex]:
From the definition of the function [tex]\( f \)[/tex] when [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{1}{2} \][/tex]
3. Check the continuity condition:
To check the continuity at [tex]\( x = 0 \)[/tex], we need to verify if:
[tex]\[ \lim_{x \to 0} f(x) = f(0) \][/tex]
From our computations:
[tex]\[ \lim_{x \to 0} f(x) = \frac{1}{2} = f(0) \][/tex]
Since both the left-hand limit and the right-hand limit as [tex]\( x \)[/tex] approaches 0 are equal to [tex]\( f(0) \)[/tex], we conclude that [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 0 \)[/tex].
Thus, the function [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 0 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.