At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To describe the translation of a triangle on a coordinate plane where it is moved 4 units to the right and 3 units down, we need to determine how each coordinate point [tex]\((x, y)\)[/tex] changes as a result of the translation.
First, let's understand the effect of moving 4 units to the right. When a point on the coordinate plane is moved to the right, the [tex]\(x\)[/tex]-coordinate increases by the number of units moved. Thus, if we move a point [tex]\((x, y)\)[/tex] 4 units to the right, the new [tex]\(x\)[/tex]-coordinate will be [tex]\(x + 4\)[/tex].
Next, let's understand the effect of moving 3 units down. When a point on the coordinate plane is moved down, the [tex]\(y\)[/tex]-coordinate decreases by the number of units moved. Thus, if we move a point [tex]\((x, y)\)[/tex] 3 units down, the new [tex]\(y\)[/tex]-coordinate will be [tex]\(y - 3\)[/tex].
Combining these two transformations, the rule for the translation of a point [tex]\((x, y)\)[/tex] after moving it 4 units to the right and 3 units down can be written as:
[tex]\[ (x, y) \rightarrow (x + 4, y - 3) \][/tex]
Now let's compare this rule with the given options:
1. [tex]\((x, y) \rightarrow (x + 3, y - 4)\)[/tex] — This rule suggests increasing the [tex]\(x\)[/tex]-coordinate by 3 and decreasing the [tex]\(y\)[/tex]-coordinate by 4, which does not match our translation.
2. [tex]\((x, y) \rightarrow (x + 3, y + 4)\)[/tex] — This rule suggests increasing the [tex]\(x\)[/tex]-coordinate by 3 and increasing the [tex]\(y\)[/tex]-coordinate by 4, which does not match our translation.
3. [tex]\((x, y) \rightarrow (x + 4, y - 3)\)[/tex] — This rule suggests increasing the [tex]\(x\)[/tex]-coordinate by 4 and decreasing the [tex]\(y\)[/tex]-coordinate by 3, which accurately describes our translation.
4. [tex]\((x, y) \rightarrow (x + 4, y + 3)\)[/tex] — This rule suggests increasing the [tex]\(x\)[/tex]-coordinate by 4 and increasing the [tex]\(y\)[/tex]-coordinate by 3, which does not match our translation.
Therefore, the rule that correctly describes the translation of the triangle is:
[tex]\[ (x, y) \rightarrow (x + 4, y - 3) \][/tex]
So the correct answer is:
[tex]\[ \boxed{3} \][/tex]
First, let's understand the effect of moving 4 units to the right. When a point on the coordinate plane is moved to the right, the [tex]\(x\)[/tex]-coordinate increases by the number of units moved. Thus, if we move a point [tex]\((x, y)\)[/tex] 4 units to the right, the new [tex]\(x\)[/tex]-coordinate will be [tex]\(x + 4\)[/tex].
Next, let's understand the effect of moving 3 units down. When a point on the coordinate plane is moved down, the [tex]\(y\)[/tex]-coordinate decreases by the number of units moved. Thus, if we move a point [tex]\((x, y)\)[/tex] 3 units down, the new [tex]\(y\)[/tex]-coordinate will be [tex]\(y - 3\)[/tex].
Combining these two transformations, the rule for the translation of a point [tex]\((x, y)\)[/tex] after moving it 4 units to the right and 3 units down can be written as:
[tex]\[ (x, y) \rightarrow (x + 4, y - 3) \][/tex]
Now let's compare this rule with the given options:
1. [tex]\((x, y) \rightarrow (x + 3, y - 4)\)[/tex] — This rule suggests increasing the [tex]\(x\)[/tex]-coordinate by 3 and decreasing the [tex]\(y\)[/tex]-coordinate by 4, which does not match our translation.
2. [tex]\((x, y) \rightarrow (x + 3, y + 4)\)[/tex] — This rule suggests increasing the [tex]\(x\)[/tex]-coordinate by 3 and increasing the [tex]\(y\)[/tex]-coordinate by 4, which does not match our translation.
3. [tex]\((x, y) \rightarrow (x + 4, y - 3)\)[/tex] — This rule suggests increasing the [tex]\(x\)[/tex]-coordinate by 4 and decreasing the [tex]\(y\)[/tex]-coordinate by 3, which accurately describes our translation.
4. [tex]\((x, y) \rightarrow (x + 4, y + 3)\)[/tex] — This rule suggests increasing the [tex]\(x\)[/tex]-coordinate by 4 and increasing the [tex]\(y\)[/tex]-coordinate by 3, which does not match our translation.
Therefore, the rule that correctly describes the translation of the triangle is:
[tex]\[ (x, y) \rightarrow (x + 4, y - 3) \][/tex]
So the correct answer is:
[tex]\[ \boxed{3} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.