At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's determine the translation rule used to move triangle ABC to triangle [tex]\( A'B'C' \)[/tex]. In a translation, each point [tex]\( (x, y) \)[/tex] of the original figure moves to a new position [tex]\( (x', y') \)[/tex] defined by the translation rule [tex]\( T_{(dx, dy)}(x, y) = (x + dx, y + dy) \)[/tex].
### Step-by-Step Process:
1. Identify the Original and Translated Coordinates:
- The original coordinates of the vertices of triangle ABC are:
- [tex]\( A(7, -4) \)[/tex]
- [tex]\( B(10, 3) \)[/tex]
- [tex]\( C(6, 1) \)[/tex]
- The coordinates of the translated vertices are:
- [tex]\( A'(5, 1) \)[/tex]
- [tex]\( B'(8, 8) \)[/tex]
- [tex]\( C'(4, 6) \)[/tex]
2. Calculate the Translation Vector:
- To find the translation vector [tex]\( (dx, dy) \)[/tex], we compare the coordinates of one original point with its corresponding translated point. We will use point [tex]\( A \)[/tex] and [tex]\( A' \)[/tex].
- For point [tex]\( A \)[/tex] and [tex]\( A' \)[/tex]:
[tex]\[ dx = A'_x - A_x = 5 - 7 = -2 \][/tex]
[tex]\[ dy = A'_y - A_y = 1 - (-4) = 1 + 4 = 5 \][/tex]
- Therefore, the translation vector is [tex]\( (dx, dy) = (-2, 5) \)[/tex].
3. Verify the Translation Rule:
- To ensure our calculation is correct, we can verify it using other vertices:
- For point [tex]\( B \)[/tex] and [tex]\( B' \)[/tex]:
[tex]\[ dx = B'_x - B_x = 8 - 10 = -2 \][/tex]
[tex]\[ dy = B'_y - B_y = 8 - 3 = 5 \][/tex]
- For point [tex]\( C \)[/tex] and [tex]\( C' \)[/tex]:
[tex]\[ dx = C'_x - C_x = 4 - 6 = -2 \][/tex]
[tex]\[ dy = C'_y - C_y = 6 - 1 = 5 \][/tex]
- Both checks match [tex]\( dx = -2 \)[/tex] and [tex]\( dy = 5 \)[/tex].
Therefore, the rule Randy used for the translation is [tex]\( T_{-2, 5}(x, y) \)[/tex]. Thus, the correct answer is:
[tex]\[ T_{-2, 5}(x, y) \][/tex]
### Step-by-Step Process:
1. Identify the Original and Translated Coordinates:
- The original coordinates of the vertices of triangle ABC are:
- [tex]\( A(7, -4) \)[/tex]
- [tex]\( B(10, 3) \)[/tex]
- [tex]\( C(6, 1) \)[/tex]
- The coordinates of the translated vertices are:
- [tex]\( A'(5, 1) \)[/tex]
- [tex]\( B'(8, 8) \)[/tex]
- [tex]\( C'(4, 6) \)[/tex]
2. Calculate the Translation Vector:
- To find the translation vector [tex]\( (dx, dy) \)[/tex], we compare the coordinates of one original point with its corresponding translated point. We will use point [tex]\( A \)[/tex] and [tex]\( A' \)[/tex].
- For point [tex]\( A \)[/tex] and [tex]\( A' \)[/tex]:
[tex]\[ dx = A'_x - A_x = 5 - 7 = -2 \][/tex]
[tex]\[ dy = A'_y - A_y = 1 - (-4) = 1 + 4 = 5 \][/tex]
- Therefore, the translation vector is [tex]\( (dx, dy) = (-2, 5) \)[/tex].
3. Verify the Translation Rule:
- To ensure our calculation is correct, we can verify it using other vertices:
- For point [tex]\( B \)[/tex] and [tex]\( B' \)[/tex]:
[tex]\[ dx = B'_x - B_x = 8 - 10 = -2 \][/tex]
[tex]\[ dy = B'_y - B_y = 8 - 3 = 5 \][/tex]
- For point [tex]\( C \)[/tex] and [tex]\( C' \)[/tex]:
[tex]\[ dx = C'_x - C_x = 4 - 6 = -2 \][/tex]
[tex]\[ dy = C'_y - C_y = 6 - 1 = 5 \][/tex]
- Both checks match [tex]\( dx = -2 \)[/tex] and [tex]\( dy = 5 \)[/tex].
Therefore, the rule Randy used for the translation is [tex]\( T_{-2, 5}(x, y) \)[/tex]. Thus, the correct answer is:
[tex]\[ T_{-2, 5}(x, y) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.