Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the magnitude of the electric field at a specific point where a charge is experiencing an electric force, we use the basic relationship between electric force ([tex]\(F\)[/tex]), charge ([tex]\(q\)[/tex]), and electric field ([tex]\(E\)[/tex]):
[tex]\[ E = \frac{F}{q} \][/tex]
Here, [tex]\(E\)[/tex] represents the electric field, [tex]\(F\)[/tex] represents the electric force acting on the charge, and [tex]\(q\)[/tex] represents the magnitude of the charge itself.
1. Identify the given values:
- The charge ([tex]\(q\)[/tex]) is [tex]\(4.20\)[/tex] Coulombs (C).
- The electric force ([tex]\(F\)[/tex]) is [tex]\(2.55\)[/tex] Newtons (N).
2. Substitute these values into the formula:
[tex]\[ E = \frac{F}{q} \][/tex]
[tex]\[ E = \frac{2.55\ \text{N}}{4.20\ \text{C}} \][/tex]
3. Perform the division to find the electric field:
When you divide [tex]\(2.55\)[/tex] by [tex]\(4.20\)[/tex], you get:
[tex]\[ E \approx 0.6071\ \text{N/C} \][/tex]
Therefore, the magnitude of the electric field at that point is approximately [tex]\(0.6071\)[/tex] Newtons per Coulomb (N/C).
[tex]\[ E = \frac{F}{q} \][/tex]
Here, [tex]\(E\)[/tex] represents the electric field, [tex]\(F\)[/tex] represents the electric force acting on the charge, and [tex]\(q\)[/tex] represents the magnitude of the charge itself.
1. Identify the given values:
- The charge ([tex]\(q\)[/tex]) is [tex]\(4.20\)[/tex] Coulombs (C).
- The electric force ([tex]\(F\)[/tex]) is [tex]\(2.55\)[/tex] Newtons (N).
2. Substitute these values into the formula:
[tex]\[ E = \frac{F}{q} \][/tex]
[tex]\[ E = \frac{2.55\ \text{N}}{4.20\ \text{C}} \][/tex]
3. Perform the division to find the electric field:
When you divide [tex]\(2.55\)[/tex] by [tex]\(4.20\)[/tex], you get:
[tex]\[ E \approx 0.6071\ \text{N/C} \][/tex]
Therefore, the magnitude of the electric field at that point is approximately [tex]\(0.6071\)[/tex] Newtons per Coulomb (N/C).
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.