Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Using the binomial theorem, expand [tex]\left(1+ e ^{2 x}\right)^4[/tex], simplifying each term.

Sagot :

To expand [tex]\((1 + (2x)^4)\)[/tex] using the binomial theorem, we start by understanding the binomial theorem itself, which states:

[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]

In this problem, [tex]\(a = 1\)[/tex], [tex]\(b = (2x)^4\)[/tex], and [tex]\(n = 1\)[/tex]. Let's proceed with the expansion:

Given expression:
[tex]\[ \left(1 + (2x)^4\right)^1 \][/tex]

The binomial theorem now simplifies to:

[tex]\[ (1 + b)^1 = 1 + b \][/tex]

Substituting [tex]\(b = (2x)^4\)[/tex]:

[tex]\[ (1 + (2x)^4)^1 = 1 + (2x)^4 \][/tex]

Now we expand:

[tex]\[ (2x)^4 = 2^4 \cdot x^4 = 16 \cdot x^4 = 16x^4 \][/tex]

So the expanded form becomes:

[tex]\[ 1 + 16x^4 \][/tex]

Thus, the expansion of [tex]\((1 + (2x)^4)\)[/tex] is:

[tex]\[ 1 + 16x^4 \][/tex]

Therefore, the simplified form is:
[tex]\[ 16 x^4 + 1 \][/tex]