Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
We are given the trigonometric equation and tasked to determine the correctness of Keisha's and David's procedures. Let's analyze the equation in step-by-step detail.
First, consider the original equation:
[tex]\[ \frac{\left(-\frac{8}{17}\right)^2}{\cos ^2 \theta} + 1 = \frac{1}{\cos ^2 \theta} \][/tex]
1. Simplification of the given equation:
Simplify the left-hand side:
[tex]\[ \left(-\frac{8}{17}\right)^2 = \frac{64}{289} \][/tex]
Thus, the equation becomes:
[tex]\[ \frac{\frac{64}{289}}{\cos^2 \theta} + 1 = \frac{1}{\cos^2 \theta} \][/tex]
2. Eliminate the denominator:
Multiply through by [tex]\(\cos^2 \theta\)[/tex] to eliminate the denominator:
[tex]\[ \frac{64}{289} + \cos^2 \theta = 1 \][/tex]
3. Isolate [tex]\(\cos^2 \theta\)[/tex]:
Rearrange the equation to solve for [tex]\(\cos^2 \theta\)[/tex]:
[tex]\[ \cos^2 \theta = 1 - \frac{64}{289} \][/tex]
4. Simplify the right-hand side:
Simplify the fraction:
[tex]\[ \cos^2 \theta = \frac{289}{289} - \frac{64}{289} = \frac{225}{289} \][/tex]
5. Take the square root:
Solve for [tex]\(\cos \theta\)[/tex] by taking the square root of both sides:
[tex]\[ \cos \theta = \pm \sqrt{\frac{225}{289}} = \pm \frac{15}{17} \][/tex]
Now let's verify Keisha's and David's procedures:
- Keisha's procedure:
She solved for [tex]\(\cos \theta\)[/tex] as follows:
[tex]\[ \cos \theta = \pm \sqrt{1 - \frac{64}{289}} = \pm \sqrt{\frac{225}{289}} = \pm \frac{15}{17} \][/tex]
This is correct.
- David's procedure:
He solved for [tex]\(\cos \theta\)[/tex] as follows:
[tex]\[ \cos \theta = \pm \sqrt{\frac{225}{289}} = \pm \frac{15}{17} \][/tex]
This is also correct.
Therefore, both Keisha's and David's procedures are correct.
The final answer is:
[tex]\[ \text{Both procedures are correct.} \][/tex]
First, consider the original equation:
[tex]\[ \frac{\left(-\frac{8}{17}\right)^2}{\cos ^2 \theta} + 1 = \frac{1}{\cos ^2 \theta} \][/tex]
1. Simplification of the given equation:
Simplify the left-hand side:
[tex]\[ \left(-\frac{8}{17}\right)^2 = \frac{64}{289} \][/tex]
Thus, the equation becomes:
[tex]\[ \frac{\frac{64}{289}}{\cos^2 \theta} + 1 = \frac{1}{\cos^2 \theta} \][/tex]
2. Eliminate the denominator:
Multiply through by [tex]\(\cos^2 \theta\)[/tex] to eliminate the denominator:
[tex]\[ \frac{64}{289} + \cos^2 \theta = 1 \][/tex]
3. Isolate [tex]\(\cos^2 \theta\)[/tex]:
Rearrange the equation to solve for [tex]\(\cos^2 \theta\)[/tex]:
[tex]\[ \cos^2 \theta = 1 - \frac{64}{289} \][/tex]
4. Simplify the right-hand side:
Simplify the fraction:
[tex]\[ \cos^2 \theta = \frac{289}{289} - \frac{64}{289} = \frac{225}{289} \][/tex]
5. Take the square root:
Solve for [tex]\(\cos \theta\)[/tex] by taking the square root of both sides:
[tex]\[ \cos \theta = \pm \sqrt{\frac{225}{289}} = \pm \frac{15}{17} \][/tex]
Now let's verify Keisha's and David's procedures:
- Keisha's procedure:
She solved for [tex]\(\cos \theta\)[/tex] as follows:
[tex]\[ \cos \theta = \pm \sqrt{1 - \frac{64}{289}} = \pm \sqrt{\frac{225}{289}} = \pm \frac{15}{17} \][/tex]
This is correct.
- David's procedure:
He solved for [tex]\(\cos \theta\)[/tex] as follows:
[tex]\[ \cos \theta = \pm \sqrt{\frac{225}{289}} = \pm \frac{15}{17} \][/tex]
This is also correct.
Therefore, both Keisha's and David's procedures are correct.
The final answer is:
[tex]\[ \text{Both procedures are correct.} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.