Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the image (or range) of the function [tex]\(\beta\)[/tex] defined by [tex]\(\beta: \mathbb{Z}^+ \rightarrow \mathbb{Z}^+\)[/tex] with [tex]\(\beta(x) = 2x + 1\)[/tex], we should analyze the outputs of the function for inputs belonging to the positive integers [tex]\(\mathbb{Z}^+\)[/tex].
### Step-by-Step Solution:
1. Understand the function definition:
- The function [tex]\(\beta\)[/tex] maps positive integers to positive integers.
- For any positive integer [tex]\(x\)[/tex], the function outputs [tex]\(2x + 1\)[/tex].
2. Calculate the function's output for the first few positive integers:
- When [tex]\(x = 1\)[/tex]:
[tex]\[ \beta(1) = 2(1) + 1 = 3 \][/tex]
- When [tex]\(x = 2\)[/tex]:
[tex]\[ \beta(2) = 2(2) + 1 = 5 \][/tex]
- When [tex]\(x = 3\)[/tex]:
[tex]\[ \beta(3) = 2(3) + 1 = 7 \][/tex]
- When [tex]\(x = 4\)[/tex]:
[tex]\[ \beta(4) = 2(4) + 1 = 9 \][/tex]
- When [tex]\(x = 5\)[/tex]:
[tex]\[ \beta(5) = 2(5) + 1 = 11 \][/tex]
3. Infer the pattern:
- The outputs obtained from the calculations are 3, 5, 7, 9, 11.
- These numbers suggest a pattern of being odd numbers, starting from 3 and increasing by 2 for each successive positive integer input.
4. Generalize the image (range) of the function:
- For any positive integer [tex]\(x\)[/tex], [tex]\(\beta(x) = 2x + 1\)[/tex] always yields an odd number because multiplying any integer by 2 results in an even number, and adding 1 to an even number results in an odd number.
- Therefore, the image of [tex]\(\beta\)[/tex] is the set of all positive odd numbers greater than or equal to 3.
### Conclusion:
The image (or range) of the function [tex]\(\beta\)[/tex] defined by [tex]\(\beta(x) = 2x + 1\)[/tex] for [tex]\(x \in \mathbb{Z}^+\)[/tex] is the set of all positive odd numbers starting from 3. Explicitly, the first few elements in this set are 3, 5, 7, 9, 11, and so on.
[tex]\[ \boxed{\{3, 5, 7, 9, 11, \ldots\}} \][/tex]
### Step-by-Step Solution:
1. Understand the function definition:
- The function [tex]\(\beta\)[/tex] maps positive integers to positive integers.
- For any positive integer [tex]\(x\)[/tex], the function outputs [tex]\(2x + 1\)[/tex].
2. Calculate the function's output for the first few positive integers:
- When [tex]\(x = 1\)[/tex]:
[tex]\[ \beta(1) = 2(1) + 1 = 3 \][/tex]
- When [tex]\(x = 2\)[/tex]:
[tex]\[ \beta(2) = 2(2) + 1 = 5 \][/tex]
- When [tex]\(x = 3\)[/tex]:
[tex]\[ \beta(3) = 2(3) + 1 = 7 \][/tex]
- When [tex]\(x = 4\)[/tex]:
[tex]\[ \beta(4) = 2(4) + 1 = 9 \][/tex]
- When [tex]\(x = 5\)[/tex]:
[tex]\[ \beta(5) = 2(5) + 1 = 11 \][/tex]
3. Infer the pattern:
- The outputs obtained from the calculations are 3, 5, 7, 9, 11.
- These numbers suggest a pattern of being odd numbers, starting from 3 and increasing by 2 for each successive positive integer input.
4. Generalize the image (range) of the function:
- For any positive integer [tex]\(x\)[/tex], [tex]\(\beta(x) = 2x + 1\)[/tex] always yields an odd number because multiplying any integer by 2 results in an even number, and adding 1 to an even number results in an odd number.
- Therefore, the image of [tex]\(\beta\)[/tex] is the set of all positive odd numbers greater than or equal to 3.
### Conclusion:
The image (or range) of the function [tex]\(\beta\)[/tex] defined by [tex]\(\beta(x) = 2x + 1\)[/tex] for [tex]\(x \in \mathbb{Z}^+\)[/tex] is the set of all positive odd numbers starting from 3. Explicitly, the first few elements in this set are 3, 5, 7, 9, 11, and so on.
[tex]\[ \boxed{\{3, 5, 7, 9, 11, \ldots\}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.