Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the value of the cosine of an angle measuring [tex]\(\frac{\pi}{2}\)[/tex] radians, let's consider the position of this angle in the unit circle.
1. Understanding the Unit Circle:
- The unit circle is a circle with a radius of 1 centered at the origin [tex]\((0,0)\)[/tex] on the Cartesian plane.
- Any angle in standard position is measured from the positive [tex]\(x\)[/tex]-axis, rotating counterclockwise.
2. Position of [tex]\(\frac{\pi}{2}\)[/tex] Radians:
- An angle of [tex]\(\frac{\pi}{2}\)[/tex] radians corresponds to a 90-degree angle.
- When you measure 90 degrees (or [tex]\(\frac{\pi}{2}\)[/tex] radians) counterclockwise from the positive [tex]\(x\)[/tex]-axis, you land on the positive [tex]\(y\)[/tex]-axis.
3. Coordinates of the Point on the Unit Circle:
- The coordinates of the point where [tex]\(\frac{\pi}{2}\)[/tex] radians intersects the unit circle are [tex]\((0, 1)\)[/tex].
4. Cosine Function and Coordinates:
- The cosine of an angle in the unit circle is defined as the [tex]\(x\)[/tex]-coordinate of the point on the unit circle corresponding to that angle.
5. Evaluating Cosine at the Angle:
- For the angle [tex]\(\frac{\pi}{2}\)[/tex] radians, the point on the unit circle is [tex]\((0, 1)\)[/tex].
- Therefore, the [tex]\(x\)[/tex]-coordinate at this point is 0.
6. Conclusion:
- The value of the cosine of the angle [tex]\(\frac{\pi}{2}\)[/tex] radians is [tex]\(0\)[/tex].
Thus, the value of the cosine of the angle [tex]\(\frac{\pi}{2}\)[/tex] radians is [tex]\(0\)[/tex].
1. Understanding the Unit Circle:
- The unit circle is a circle with a radius of 1 centered at the origin [tex]\((0,0)\)[/tex] on the Cartesian plane.
- Any angle in standard position is measured from the positive [tex]\(x\)[/tex]-axis, rotating counterclockwise.
2. Position of [tex]\(\frac{\pi}{2}\)[/tex] Radians:
- An angle of [tex]\(\frac{\pi}{2}\)[/tex] radians corresponds to a 90-degree angle.
- When you measure 90 degrees (or [tex]\(\frac{\pi}{2}\)[/tex] radians) counterclockwise from the positive [tex]\(x\)[/tex]-axis, you land on the positive [tex]\(y\)[/tex]-axis.
3. Coordinates of the Point on the Unit Circle:
- The coordinates of the point where [tex]\(\frac{\pi}{2}\)[/tex] radians intersects the unit circle are [tex]\((0, 1)\)[/tex].
4. Cosine Function and Coordinates:
- The cosine of an angle in the unit circle is defined as the [tex]\(x\)[/tex]-coordinate of the point on the unit circle corresponding to that angle.
5. Evaluating Cosine at the Angle:
- For the angle [tex]\(\frac{\pi}{2}\)[/tex] radians, the point on the unit circle is [tex]\((0, 1)\)[/tex].
- Therefore, the [tex]\(x\)[/tex]-coordinate at this point is 0.
6. Conclusion:
- The value of the cosine of the angle [tex]\(\frac{\pi}{2}\)[/tex] radians is [tex]\(0\)[/tex].
Thus, the value of the cosine of the angle [tex]\(\frac{\pi}{2}\)[/tex] radians is [tex]\(0\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.