Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the given problem step-by-step.
First, we need to find the points of intersection between the line [tex]\( y = 2x - 2 \)[/tex] and the curve [tex]\( x^2 - y = 5 \)[/tex].
1. We start by substituting the equation of the line [tex]\( y = 2x - 2 \)[/tex] into the equation of the curve:
[tex]\[ x^2 - (2x - 2) = 5 \][/tex]
2. Simplifying the equation:
[tex]\[ x^2 - 2x + 2 - 5 = 0 \][/tex]
[tex]\[ x^2 - 2x - 3 = 0 \][/tex]
3. Next, we solve this quadratic equation [tex]\( x^2 - 2x - 3 = 0 \)[/tex]. The roots of this equation are given by the formula for solving quadratic equations:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -3 \)[/tex]:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 12}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{16}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm 4}{2} \][/tex]
So the roots are:
[tex]\[ x = 3 \quad \text{and} \quad x = -1 \][/tex]
Thus, the points of intersection have [tex]\( x \)[/tex] coordinates [tex]\( x = 3 \)[/tex] and [tex]\( x = -1 \)[/tex].
4. To find the corresponding [tex]\( y \)[/tex]-coordinates for these [tex]\( x \)[/tex]-values, we use the equation of the line [tex]\( y = 2x - 2 \)[/tex]:
When [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 2(3) - 2 = 6 - 2 = 4 \][/tex]
So, the point [tex]\( B \)[/tex] is [tex]\( (3, 4) \)[/tex].
When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 2(-1) - 2 = -2 - 2 = -4 \][/tex]
So, the point [tex]\( A \)[/tex] is [tex]\( (-1, -4) \)[/tex].
5. Now we need to find the coordinates of the point [tex]\( P \)[/tex] that divides the segment [tex]\( AB \)[/tex] in the ratio [tex]\( 3:1 \)[/tex]. Using the section formula:
[tex]\[ P = \left( \frac{m x_2 + n x_1}{m+n}, \frac{m y_2 + n y_1}{m+n} \right) \][/tex]
Here, [tex]\( A(-1, -4) = (x_1, y_1) \)[/tex] and [tex]\( B(3, 4) = (x_2, y_2) \)[/tex], with [tex]\( m = 3 \)[/tex] and [tex]\( n = 1 \)[/tex]:
[tex]\[ x_P = \frac{3 \cdot 3 + 1 \cdot (-1)}{3+1} = \frac{9 - 1}{4} = \frac{8}{4} = 2 \][/tex]
[tex]\[ y_P = \frac{3 \cdot 4 + 1 \cdot (-4)}{3+1} = \frac{12 - 4}{4} = \frac{8}{4} = 2 \][/tex]
So, the coordinates of point [tex]\( P \)[/tex] are [tex]\( (2, 2) \)[/tex].
As a final answer:
- Points of intersection are [tex]\( A(-1, -4) \)[/tex] and [tex]\( B(3, 4) \)[/tex].
- The coordinates of point [tex]\( P \)[/tex] are [tex]\( (2, 2) \)[/tex].
First, we need to find the points of intersection between the line [tex]\( y = 2x - 2 \)[/tex] and the curve [tex]\( x^2 - y = 5 \)[/tex].
1. We start by substituting the equation of the line [tex]\( y = 2x - 2 \)[/tex] into the equation of the curve:
[tex]\[ x^2 - (2x - 2) = 5 \][/tex]
2. Simplifying the equation:
[tex]\[ x^2 - 2x + 2 - 5 = 0 \][/tex]
[tex]\[ x^2 - 2x - 3 = 0 \][/tex]
3. Next, we solve this quadratic equation [tex]\( x^2 - 2x - 3 = 0 \)[/tex]. The roots of this equation are given by the formula for solving quadratic equations:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -3 \)[/tex]:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 12}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{16}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm 4}{2} \][/tex]
So the roots are:
[tex]\[ x = 3 \quad \text{and} \quad x = -1 \][/tex]
Thus, the points of intersection have [tex]\( x \)[/tex] coordinates [tex]\( x = 3 \)[/tex] and [tex]\( x = -1 \)[/tex].
4. To find the corresponding [tex]\( y \)[/tex]-coordinates for these [tex]\( x \)[/tex]-values, we use the equation of the line [tex]\( y = 2x - 2 \)[/tex]:
When [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 2(3) - 2 = 6 - 2 = 4 \][/tex]
So, the point [tex]\( B \)[/tex] is [tex]\( (3, 4) \)[/tex].
When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 2(-1) - 2 = -2 - 2 = -4 \][/tex]
So, the point [tex]\( A \)[/tex] is [tex]\( (-1, -4) \)[/tex].
5. Now we need to find the coordinates of the point [tex]\( P \)[/tex] that divides the segment [tex]\( AB \)[/tex] in the ratio [tex]\( 3:1 \)[/tex]. Using the section formula:
[tex]\[ P = \left( \frac{m x_2 + n x_1}{m+n}, \frac{m y_2 + n y_1}{m+n} \right) \][/tex]
Here, [tex]\( A(-1, -4) = (x_1, y_1) \)[/tex] and [tex]\( B(3, 4) = (x_2, y_2) \)[/tex], with [tex]\( m = 3 \)[/tex] and [tex]\( n = 1 \)[/tex]:
[tex]\[ x_P = \frac{3 \cdot 3 + 1 \cdot (-1)}{3+1} = \frac{9 - 1}{4} = \frac{8}{4} = 2 \][/tex]
[tex]\[ y_P = \frac{3 \cdot 4 + 1 \cdot (-4)}{3+1} = \frac{12 - 4}{4} = \frac{8}{4} = 2 \][/tex]
So, the coordinates of point [tex]\( P \)[/tex] are [tex]\( (2, 2) \)[/tex].
As a final answer:
- Points of intersection are [tex]\( A(-1, -4) \)[/tex] and [tex]\( B(3, 4) \)[/tex].
- The coordinates of point [tex]\( P \)[/tex] are [tex]\( (2, 2) \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.