Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

In this activity, you will solve quadratic equations using different methods. Make sure to use the method that you are asked for in each part.

Question 1

Solve the two equations in the table by factoring. Then enter those factors and the solutions in the table.

\begin{tabular}{|l|l|}
\hline
Equation & Factors and Solutions \\
\hline
[tex]$x^2 + 10 = 0$[/tex] & \\
\hline
[tex]$4x^2 + 25 = 0$[/tex] & \\
\hline
\end{tabular}


Sagot :

Let's solve each quadratic equation by factoring.

### Equation 1: [tex]\(x^2 + 10 = 0\)[/tex]

First, we need to factor the equation. Notice that [tex]\(x^2 + 10\)[/tex] does not factor nicely with real numbers since the term [tex]\(10\)[/tex] cannot be split into real numbers that sum up to a factorable quadratic. However, we can consider its factored form as it stands:

Factored Form:
[tex]\[ x^2 + 10 \][/tex]

Now, to find the solutions, set the equation to zero:
[tex]\[ x^2 + 10 = 0 \][/tex]

Subtract 10 from both sides:
[tex]\[ x^2 = -10 \][/tex]

Take the square root of both sides. Remember that the square root of a negative number involves imaginary numbers (i):
[tex]\[ x = \pm \sqrt{-10} \][/tex]
[tex]\[ x = \pm \sqrt{10}i \][/tex]

Thus, the solutions are:
[tex]\[ x = -\sqrt{10}i \quad \text{and} \quad x = \sqrt{10}i \][/tex]

### Equation 2: [tex]\(4x^2 + 25 = 0\)[/tex]

Next, let's factor the second equation. Similar to the first equation, [tex]\(4x^2 + 25\)[/tex] does not factor nicely with real numbers but we will write its factored form:

Factored Form:
[tex]\[ 4x^2 + 25 \][/tex]

Now, set the equation to zero:
[tex]\[ 4x^2 + 25 = 0 \][/tex]

Subtract 25 from both sides:
[tex]\[ 4x^2 = -25 \][/tex]

Divide both sides by 4:
[tex]\[ x^2 = -\frac{25}{4} \][/tex]

Take the square root of both sides:
[tex]\[ x = \pm \sqrt{ -\frac{25}{4} } \][/tex]

Simplify the square root (taking into account the imaginary unit [tex]\(i\)[/tex]):
[tex]\[ x = \pm \frac{5i}{2} \][/tex]

Therefore, the solutions are:
[tex]\[ x = -\frac{5i}{2} \quad \text{and} \quad x = \frac{5i}{2} \][/tex]

### Summary

Now completing the table with the factors and solutions, we get:

\begin{tabular}{|l|l|l|}
\hline Equation & Factors & Solutions \\
\hline [tex]$x^2 + 10 = 0$[/tex] & [tex]\(x^2 + 10\)[/tex] & [tex]\([- \sqrt{10}i, \sqrt{10}i]\)[/tex] \\
\hline [tex]$4x^2 + 25 = 0$[/tex] & [tex]\(4x^2 + 25\)[/tex] & [tex]\([- \frac{5i}{2}, \frac{5i}{2}]\)[/tex] \\
\hline
\end{tabular}