Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's start by finding the coordinates of the point [tex]\(P\)[/tex] on the curve where [tex]\(\theta = \frac{\pi}{6}\)[/tex].
Given the parametric equations:
[tex]\[ x = 1 - \cos 2\theta \][/tex]
[tex]\[ y = \sin 2\theta \][/tex]
When [tex]\(\theta = \frac{\pi}{6}\)[/tex]:
[tex]\[ x_P = 1 - \cos\left(2 \cdot \frac{\pi}{6}\right) = 1 - \cos\left(\frac{\pi}{3}\right) \][/tex]
[tex]\[ y_P = \sin\left(2 \cdot \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{3}\right) \][/tex]
We know that:
[tex]\[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \][/tex]
Thus, the coordinates of point [tex]\(P\)[/tex] are:
[tex]\[ x_P = 1 - \frac{1}{2} = \frac{1}{2} \][/tex]
[tex]\[ y_P = \frac{\sqrt{3}}{2} \][/tex]
Next, we will determine the slope of the tangent line at point [tex]\(P\)[/tex]. For that, we need to find the derivatives [tex]\(\frac{dx}{d\theta}\)[/tex] and [tex]\(\frac{dy}{d\theta}\)[/tex].
Given:
[tex]\[ x = 1 - \cos 2\theta \][/tex]
[tex]\[ y = \sin 2\theta \][/tex]
The derivatives are:
[tex]\[ \frac{dx}{d\theta} = \frac{d}{d\theta}(1 - \cos 2\theta) = 2 \sin 2\theta \][/tex]
[tex]\[ \frac{dy}{d\theta} = \frac{d}{d\theta}(\sin 2\theta) = 2 \cos 2\theta \][/tex]
At [tex]\(\theta = \frac{\pi}{6}\)[/tex]:
[tex]\[ \frac{dx}{d\theta} \bigg|_{\theta = \frac{\pi}{6}} = 2 \sin\left(2 \cdot \frac{\pi}{6}\right) = 2 \sin\left(\frac{\pi}{3}\right) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \][/tex]
[tex]\[ \frac{dy}{d\theta} \bigg|_{\theta = \frac{\pi}{6}} = 2 \cos\left(2 \cdot \frac{\pi}{6}\right) = 2 \cos\left(\frac{\pi}{3}\right) = 2 \cdot \frac{1}{2} = 1 \][/tex]
The slope of the tangent line at [tex]\(P\)[/tex] is given by:
[tex]\[ \text{slope of tangent} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{1}{\sqrt{3}} \][/tex]
The slope of the normal line is the negative reciprocal of the slope of the tangent line:
[tex]\[ \text{slope of normal} = -\frac{1}{\frac{1}{\sqrt{3}}} = -\sqrt{3} \][/tex]
We can now write the equation of the normal line in point-slope form:
[tex]\[ y - y_P = \text{slope of normal} \times (x - x_P) \][/tex]
[tex]\[ y - \frac{\sqrt{3}}{2} = -\sqrt{3}(x - \frac{1}{2}) \][/tex]
Rearranging to get it in the form of [tex]\(y = mx + b\)[/tex]:
[tex]\[ y - \frac{\sqrt{3}}{2} = -\sqrt{3}x + \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ y = -\sqrt{3}x + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ y = -\sqrt{3}x + \sqrt{3} \][/tex]
Adding [tex]\(\sqrt{3}x\)[/tex] to both sides to get it in the desired format:
[tex]\[ y + \sqrt{3}x = \sqrt{3} \][/tex]
Therefore, the equation of the normal to the curve at [tex]\(P\)[/tex] is:
[tex]\[ y + \sqrt{3}x = \sqrt{3} \][/tex]
Given the parametric equations:
[tex]\[ x = 1 - \cos 2\theta \][/tex]
[tex]\[ y = \sin 2\theta \][/tex]
When [tex]\(\theta = \frac{\pi}{6}\)[/tex]:
[tex]\[ x_P = 1 - \cos\left(2 \cdot \frac{\pi}{6}\right) = 1 - \cos\left(\frac{\pi}{3}\right) \][/tex]
[tex]\[ y_P = \sin\left(2 \cdot \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{3}\right) \][/tex]
We know that:
[tex]\[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \][/tex]
Thus, the coordinates of point [tex]\(P\)[/tex] are:
[tex]\[ x_P = 1 - \frac{1}{2} = \frac{1}{2} \][/tex]
[tex]\[ y_P = \frac{\sqrt{3}}{2} \][/tex]
Next, we will determine the slope of the tangent line at point [tex]\(P\)[/tex]. For that, we need to find the derivatives [tex]\(\frac{dx}{d\theta}\)[/tex] and [tex]\(\frac{dy}{d\theta}\)[/tex].
Given:
[tex]\[ x = 1 - \cos 2\theta \][/tex]
[tex]\[ y = \sin 2\theta \][/tex]
The derivatives are:
[tex]\[ \frac{dx}{d\theta} = \frac{d}{d\theta}(1 - \cos 2\theta) = 2 \sin 2\theta \][/tex]
[tex]\[ \frac{dy}{d\theta} = \frac{d}{d\theta}(\sin 2\theta) = 2 \cos 2\theta \][/tex]
At [tex]\(\theta = \frac{\pi}{6}\)[/tex]:
[tex]\[ \frac{dx}{d\theta} \bigg|_{\theta = \frac{\pi}{6}} = 2 \sin\left(2 \cdot \frac{\pi}{6}\right) = 2 \sin\left(\frac{\pi}{3}\right) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \][/tex]
[tex]\[ \frac{dy}{d\theta} \bigg|_{\theta = \frac{\pi}{6}} = 2 \cos\left(2 \cdot \frac{\pi}{6}\right) = 2 \cos\left(\frac{\pi}{3}\right) = 2 \cdot \frac{1}{2} = 1 \][/tex]
The slope of the tangent line at [tex]\(P\)[/tex] is given by:
[tex]\[ \text{slope of tangent} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{1}{\sqrt{3}} \][/tex]
The slope of the normal line is the negative reciprocal of the slope of the tangent line:
[tex]\[ \text{slope of normal} = -\frac{1}{\frac{1}{\sqrt{3}}} = -\sqrt{3} \][/tex]
We can now write the equation of the normal line in point-slope form:
[tex]\[ y - y_P = \text{slope of normal} \times (x - x_P) \][/tex]
[tex]\[ y - \frac{\sqrt{3}}{2} = -\sqrt{3}(x - \frac{1}{2}) \][/tex]
Rearranging to get it in the form of [tex]\(y = mx + b\)[/tex]:
[tex]\[ y - \frac{\sqrt{3}}{2} = -\sqrt{3}x + \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ y = -\sqrt{3}x + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ y = -\sqrt{3}x + \sqrt{3} \][/tex]
Adding [tex]\(\sqrt{3}x\)[/tex] to both sides to get it in the desired format:
[tex]\[ y + \sqrt{3}x = \sqrt{3} \][/tex]
Therefore, the equation of the normal to the curve at [tex]\(P\)[/tex] is:
[tex]\[ y + \sqrt{3}x = \sqrt{3} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.