Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the correct classification of the matrix [tex]\( A \)[/tex], we need to analyze its properties. We are given the matrix
[tex]\[ A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right]. \][/tex]
We need to check if this matrix [tex]\( A \)[/tex] fits any of the given options:
1. Diagonal matrix:
- A diagonal matrix is one where all the non-diagonal elements are zero.
- For matrix [tex]\( A \)[/tex], the non-diagonal elements are not all zero. Hence, [tex]\( A \)[/tex] is not a diagonal matrix.
2. Idempotent matrix:
- A matrix [tex]\( B \)[/tex] is idempotent if [tex]\( B^2 = B \)[/tex].
- We need to check if [tex]\( A^2 = A \)[/tex]. Without performing the matrix multiplication, one observation is enough to show that [tex]\( A \neq A^2 \)[/tex] just by checking the structure. Therefore [tex]\( A \)[/tex] is not an idempotent matrix.
3. Involutory matrix:
- A matrix [tex]\( C \)[/tex] is involutory if [tex]\( C^2 = I \)[/tex], where [tex]\( I \)[/tex] is the identity matrix.
- To determine if [tex]\( A \)[/tex] is involutory, we calculate [tex]\( A^2 \)[/tex] and check if it equals the identity matrix.
4. Singular matrix:
- A matrix is singular if its determinant is zero.
- We calculate the determinant of [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = 0 \][/tex]
- From the determinant calculation, [tex]\(\text{det}(A) \neq 0\)[/tex]. Thus, [tex]\( A \)[/tex] is not a singular matrix.
Given the checks and properties:
We observe that to determine if [tex]\( A \)[/tex] is involutory, we verified that [tex]\( A^2 \)[/tex] does indeed equal the identity matrix [tex]\( I \)[/tex]. Therefore, the correct answer is:
[tex]\[ A \text{ is an }\textbf{involutory matrix} \][/tex]
Thus, the correct answer is:
C. Involutory matrix
[tex]\[ A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right]. \][/tex]
We need to check if this matrix [tex]\( A \)[/tex] fits any of the given options:
1. Diagonal matrix:
- A diagonal matrix is one where all the non-diagonal elements are zero.
- For matrix [tex]\( A \)[/tex], the non-diagonal elements are not all zero. Hence, [tex]\( A \)[/tex] is not a diagonal matrix.
2. Idempotent matrix:
- A matrix [tex]\( B \)[/tex] is idempotent if [tex]\( B^2 = B \)[/tex].
- We need to check if [tex]\( A^2 = A \)[/tex]. Without performing the matrix multiplication, one observation is enough to show that [tex]\( A \neq A^2 \)[/tex] just by checking the structure. Therefore [tex]\( A \)[/tex] is not an idempotent matrix.
3. Involutory matrix:
- A matrix [tex]\( C \)[/tex] is involutory if [tex]\( C^2 = I \)[/tex], where [tex]\( I \)[/tex] is the identity matrix.
- To determine if [tex]\( A \)[/tex] is involutory, we calculate [tex]\( A^2 \)[/tex] and check if it equals the identity matrix.
4. Singular matrix:
- A matrix is singular if its determinant is zero.
- We calculate the determinant of [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = 0 \][/tex]
- From the determinant calculation, [tex]\(\text{det}(A) \neq 0\)[/tex]. Thus, [tex]\( A \)[/tex] is not a singular matrix.
Given the checks and properties:
We observe that to determine if [tex]\( A \)[/tex] is involutory, we verified that [tex]\( A^2 \)[/tex] does indeed equal the identity matrix [tex]\( I \)[/tex]. Therefore, the correct answer is:
[tex]\[ A \text{ is an }\textbf{involutory matrix} \][/tex]
Thus, the correct answer is:
C. Involutory matrix
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.