Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To compare the fractions [tex]\(\frac{3}{7}\)[/tex] and [tex]\(\frac{4}{6}\)[/tex] using [tex]\(>\)[/tex], [tex]\(=\)[/tex], or [tex]\(<\)[/tex], follow these steps:
1. Simplify the fractions if possible:
- The fraction [tex]\(\frac{3}{7}\)[/tex] is already in its simplest form since 3 and 7 have no common factors other than 1.
- The fraction [tex]\(\frac{4}{6}\)[/tex] can be simplified:
[tex]\[ \frac{4 \div 2}{6 \div 2} = \frac{2}{3} \][/tex]
So instead of comparing [tex]\(\frac{3}{7}\)[/tex] and [tex]\(\frac{4}{6}\)[/tex], we will compare [tex]\(\frac{3}{7}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex].
2. Find a common denominator for the two fractions to compare them:
- The denominators are 7 and 3. The least common multiple (LCM) of 7 and 3 is 21.
- Convert each fraction to have the same denominator:
[tex]\[ \frac{3}{7} = \frac{3 \times 3}{7 \times 3} = \frac{9}{21} \][/tex]
[tex]\[ \frac{2}{3} = \frac{2 \times 7}{3 \times 7} = \frac{14}{21} \][/tex]
3. Compare the fractions:
- Now we compare [tex]\(\frac{9}{21}\)[/tex] and [tex]\(\frac{14}{21}\)[/tex].
- Since the denominators are the same, compare the numerators directly:
[tex]\[ 9 \, \text{and} \, 14 \][/tex]
Clearly, [tex]\(9 < 14\)[/tex].
Therefore, [tex]\(\frac{9}{21} < \frac{14}{21}\)[/tex], which means:
[tex]\[ \frac{3}{7} < \frac{2}{3} \][/tex]
4. Conclude the comparison:
- So the comparison of [tex]\(\frac{3}{7}\)[/tex] and [tex]\(\frac{4}{6}\)[/tex] (which simplifies to [tex]\(\frac{2}{3}\)[/tex]) yields:
[tex]\[ \frac{3}{7} < \frac{4}{6} \][/tex]
Thus, the correct answer is [tex]\(\frac{3}{7} < \frac{4}{6}\)[/tex].
1. Simplify the fractions if possible:
- The fraction [tex]\(\frac{3}{7}\)[/tex] is already in its simplest form since 3 and 7 have no common factors other than 1.
- The fraction [tex]\(\frac{4}{6}\)[/tex] can be simplified:
[tex]\[ \frac{4 \div 2}{6 \div 2} = \frac{2}{3} \][/tex]
So instead of comparing [tex]\(\frac{3}{7}\)[/tex] and [tex]\(\frac{4}{6}\)[/tex], we will compare [tex]\(\frac{3}{7}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex].
2. Find a common denominator for the two fractions to compare them:
- The denominators are 7 and 3. The least common multiple (LCM) of 7 and 3 is 21.
- Convert each fraction to have the same denominator:
[tex]\[ \frac{3}{7} = \frac{3 \times 3}{7 \times 3} = \frac{9}{21} \][/tex]
[tex]\[ \frac{2}{3} = \frac{2 \times 7}{3 \times 7} = \frac{14}{21} \][/tex]
3. Compare the fractions:
- Now we compare [tex]\(\frac{9}{21}\)[/tex] and [tex]\(\frac{14}{21}\)[/tex].
- Since the denominators are the same, compare the numerators directly:
[tex]\[ 9 \, \text{and} \, 14 \][/tex]
Clearly, [tex]\(9 < 14\)[/tex].
Therefore, [tex]\(\frac{9}{21} < \frac{14}{21}\)[/tex], which means:
[tex]\[ \frac{3}{7} < \frac{2}{3} \][/tex]
4. Conclude the comparison:
- So the comparison of [tex]\(\frac{3}{7}\)[/tex] and [tex]\(\frac{4}{6}\)[/tex] (which simplifies to [tex]\(\frac{2}{3}\)[/tex]) yields:
[tex]\[ \frac{3}{7} < \frac{4}{6} \][/tex]
Thus, the correct answer is [tex]\(\frac{3}{7} < \frac{4}{6}\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.