At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine if the given equation [tex]\( x^4 = 256 \)[/tex] is an exponential equation, we need to understand the characteristics of exponential equations and how they differ from other types of equations.
### Characteristics of Exponential Equations
An exponential equation is one where a variable appears in the exponent. It generally takes the form [tex]\( a \cdot b^x = c \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants, [tex]\( b \)[/tex] is a positive real number not equal to 1, [tex]\( x \)[/tex] is the variable, and [tex]\( c \)[/tex] is another constant.
### Analysis of the Given Equation
Consider the equation [tex]\( x^4 = 256 \)[/tex]:
1. Form of the Equation: The given equation expresses [tex]\( x \)[/tex] raised to the power of 4, set equal to 256. In an exponential equation, the variable [tex]\( x \)[/tex] should be in the exponent, but in this equation, [tex]\( x \)[/tex] is the base and 4 is the exponent.
2. Polynomial Nature: The equation [tex]\( x^4 = 256 \)[/tex] is actually a polynomial equation. Specifically, it is a fourth-degree polynomial, since the highest power of the variable [tex]\( x \)[/tex] is 4.
3. Absence of an Exponential Term: In an exponential equation, such as [tex]\( 2^x = 16 \)[/tex], the variable [tex]\( x \)[/tex] is in the exponent. The given equation does not match this form; it lacks the structure [tex]\( b^x \)[/tex] where [tex]\( b \)[/tex] is a constant base and [tex]\( x \)[/tex] is the exponent.
### Conclusion
The given equation [tex]\( x^4 = 256 \)[/tex] is not an exponential equation because the variable [tex]\( x \)[/tex] is the base raised to a power (4), rather than the exponent itself. Instead, this equation is a polynomial equation of the fourth degree.
### Characteristics of Exponential Equations
An exponential equation is one where a variable appears in the exponent. It generally takes the form [tex]\( a \cdot b^x = c \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants, [tex]\( b \)[/tex] is a positive real number not equal to 1, [tex]\( x \)[/tex] is the variable, and [tex]\( c \)[/tex] is another constant.
### Analysis of the Given Equation
Consider the equation [tex]\( x^4 = 256 \)[/tex]:
1. Form of the Equation: The given equation expresses [tex]\( x \)[/tex] raised to the power of 4, set equal to 256. In an exponential equation, the variable [tex]\( x \)[/tex] should be in the exponent, but in this equation, [tex]\( x \)[/tex] is the base and 4 is the exponent.
2. Polynomial Nature: The equation [tex]\( x^4 = 256 \)[/tex] is actually a polynomial equation. Specifically, it is a fourth-degree polynomial, since the highest power of the variable [tex]\( x \)[/tex] is 4.
3. Absence of an Exponential Term: In an exponential equation, such as [tex]\( 2^x = 16 \)[/tex], the variable [tex]\( x \)[/tex] is in the exponent. The given equation does not match this form; it lacks the structure [tex]\( b^x \)[/tex] where [tex]\( b \)[/tex] is a constant base and [tex]\( x \)[/tex] is the exponent.
### Conclusion
The given equation [tex]\( x^4 = 256 \)[/tex] is not an exponential equation because the variable [tex]\( x \)[/tex] is the base raised to a power (4), rather than the exponent itself. Instead, this equation is a polynomial equation of the fourth degree.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.