Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation [tex]\(-48(1 + 0.5x) + 2x^2 = 8x \left(\frac{1}{4}x + 3 \right)\)[/tex], we need to follow these steps:
1. Expand both sides of the equation:
- Expand the left-hand side: [tex]\(-48(1 + 0.5x) + 2x^2\)[/tex]
[tex]\[ -48 \cdot 1 - 48 \cdot 0.5x + 2x^2 = -48 - 24x + 2x^2 \][/tex]
- Expand the right-hand side: [tex]\(8x \left(\frac{1}{4}x + 3\right)\)[/tex]
[tex]\[ 8x \cdot \frac{1}{4}x + 8x \cdot 3 = 2x^2 + 24x \][/tex]
So the expanded equation is:
[tex]\[ -48 - 24x + 2x^2 = 2x^2 + 24x \][/tex]
2. Move all terms to one side to set the equation to 0:
Subtract [tex]\(2x^2\)[/tex] and [tex]\(24x\)[/tex] from both sides of the equation:
[tex]\[ -48 - 24x + 2x^2 - 2x^2 - 24x = 2x^2 + 24x - 2x^2 - 24x \][/tex]
This simplifies to:
[tex]\[ -48 - 48x = 0 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
Add [tex]\(48\)[/tex] to both sides of the equation:
[tex]\[ -48x = 48 \][/tex]
Divide both sides by [tex]\(-48\)[/tex]:
[tex]\[ x = -1 \][/tex]
So, the solution to the equation [tex]\(-48(1 + 0.5x) + 2x^2 = 8x \left(\frac{1}{4}x + 3 \right)\)[/tex] is:
[tex]\[ x = -1 \][/tex]
1. Expand both sides of the equation:
- Expand the left-hand side: [tex]\(-48(1 + 0.5x) + 2x^2\)[/tex]
[tex]\[ -48 \cdot 1 - 48 \cdot 0.5x + 2x^2 = -48 - 24x + 2x^2 \][/tex]
- Expand the right-hand side: [tex]\(8x \left(\frac{1}{4}x + 3\right)\)[/tex]
[tex]\[ 8x \cdot \frac{1}{4}x + 8x \cdot 3 = 2x^2 + 24x \][/tex]
So the expanded equation is:
[tex]\[ -48 - 24x + 2x^2 = 2x^2 + 24x \][/tex]
2. Move all terms to one side to set the equation to 0:
Subtract [tex]\(2x^2\)[/tex] and [tex]\(24x\)[/tex] from both sides of the equation:
[tex]\[ -48 - 24x + 2x^2 - 2x^2 - 24x = 2x^2 + 24x - 2x^2 - 24x \][/tex]
This simplifies to:
[tex]\[ -48 - 48x = 0 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
Add [tex]\(48\)[/tex] to both sides of the equation:
[tex]\[ -48x = 48 \][/tex]
Divide both sides by [tex]\(-48\)[/tex]:
[tex]\[ x = -1 \][/tex]
So, the solution to the equation [tex]\(-48(1 + 0.5x) + 2x^2 = 8x \left(\frac{1}{4}x + 3 \right)\)[/tex] is:
[tex]\[ x = -1 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.