Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the supplement of [tex]\( 100^\circ 48' \)[/tex], let’s break the problem down into a few clear steps:
1. Convert degrees and minutes to decimal degrees:
- Degrees ([tex]\(d\)[/tex]): [tex]\( 100^\circ \)[/tex]
- Minutes ([tex]\(m\)[/tex]): [tex]\( 48' \)[/tex]
We know that 1 degree is equal to 60 minutes. So, to convert [tex]\( 48' \)[/tex] into degrees, we do:
[tex]\[ 48' = \frac{48}{60} = 0.8^\circ \][/tex]
Therefore, the total angle in decimal degrees is:
[tex]\[ 100^\circ + 0.8^\circ = 100.8^\circ \][/tex]
2. Calculate the supplement of the angle:
- The supplement of an angle is found by subtracting the angle from [tex]\( 180^\circ \)[/tex]:
[tex]\[ 180^\circ - 100.8^\circ = 79.2^\circ \][/tex]
3. Convert the supplement from decimal degrees back to degrees and minutes:
- Begin with the whole number part: [tex]\( 79 \)[/tex] degrees.
- The remaining decimal part needs to be converted back into minutes. The decimal part is [tex]\( 0.2 \)[/tex]:
[tex]\[ 0.2^\circ \times 60 = 12 \text{ minutes} \][/tex]
Therefore, the supplement of [tex]\( 100^\circ 48' \)[/tex] is [tex]\( 79^\circ 12' \)[/tex].
To summarize the results:
- Original angle: [tex]\( 100.8^\circ \)[/tex]
- The supplement in decimal degrees: [tex]\( 79.2^\circ \)[/tex]
- The supplement in degrees and minutes: [tex]\( 79^\circ 12' \)[/tex].
The complete answer is [tex]\( 79^\circ 12' \)[/tex] for the supplement of [tex]\( 100^\circ 48' \)[/tex].
1. Convert degrees and minutes to decimal degrees:
- Degrees ([tex]\(d\)[/tex]): [tex]\( 100^\circ \)[/tex]
- Minutes ([tex]\(m\)[/tex]): [tex]\( 48' \)[/tex]
We know that 1 degree is equal to 60 minutes. So, to convert [tex]\( 48' \)[/tex] into degrees, we do:
[tex]\[ 48' = \frac{48}{60} = 0.8^\circ \][/tex]
Therefore, the total angle in decimal degrees is:
[tex]\[ 100^\circ + 0.8^\circ = 100.8^\circ \][/tex]
2. Calculate the supplement of the angle:
- The supplement of an angle is found by subtracting the angle from [tex]\( 180^\circ \)[/tex]:
[tex]\[ 180^\circ - 100.8^\circ = 79.2^\circ \][/tex]
3. Convert the supplement from decimal degrees back to degrees and minutes:
- Begin with the whole number part: [tex]\( 79 \)[/tex] degrees.
- The remaining decimal part needs to be converted back into minutes. The decimal part is [tex]\( 0.2 \)[/tex]:
[tex]\[ 0.2^\circ \times 60 = 12 \text{ minutes} \][/tex]
Therefore, the supplement of [tex]\( 100^\circ 48' \)[/tex] is [tex]\( 79^\circ 12' \)[/tex].
To summarize the results:
- Original angle: [tex]\( 100.8^\circ \)[/tex]
- The supplement in decimal degrees: [tex]\( 79.2^\circ \)[/tex]
- The supplement in degrees and minutes: [tex]\( 79^\circ 12' \)[/tex].
The complete answer is [tex]\( 79^\circ 12' \)[/tex] for the supplement of [tex]\( 100^\circ 48' \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.