Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Find the supplement of [tex]100^{\circ} 48^{\prime}[/tex].

Sagot :

To find the supplement of [tex]\( 100^\circ 48' \)[/tex], let’s break the problem down into a few clear steps:

1. Convert degrees and minutes to decimal degrees:
- Degrees ([tex]\(d\)[/tex]): [tex]\( 100^\circ \)[/tex]
- Minutes ([tex]\(m\)[/tex]): [tex]\( 48' \)[/tex]

We know that 1 degree is equal to 60 minutes. So, to convert [tex]\( 48' \)[/tex] into degrees, we do:

[tex]\[ 48' = \frac{48}{60} = 0.8^\circ \][/tex]

Therefore, the total angle in decimal degrees is:

[tex]\[ 100^\circ + 0.8^\circ = 100.8^\circ \][/tex]

2. Calculate the supplement of the angle:
- The supplement of an angle is found by subtracting the angle from [tex]\( 180^\circ \)[/tex]:

[tex]\[ 180^\circ - 100.8^\circ = 79.2^\circ \][/tex]

3. Convert the supplement from decimal degrees back to degrees and minutes:
- Begin with the whole number part: [tex]\( 79 \)[/tex] degrees.
- The remaining decimal part needs to be converted back into minutes. The decimal part is [tex]\( 0.2 \)[/tex]:

[tex]\[ 0.2^\circ \times 60 = 12 \text{ minutes} \][/tex]

Therefore, the supplement of [tex]\( 100^\circ 48' \)[/tex] is [tex]\( 79^\circ 12' \)[/tex].

To summarize the results:
- Original angle: [tex]\( 100.8^\circ \)[/tex]
- The supplement in decimal degrees: [tex]\( 79.2^\circ \)[/tex]
- The supplement in degrees and minutes: [tex]\( 79^\circ 12' \)[/tex].

The complete answer is [tex]\( 79^\circ 12' \)[/tex] for the supplement of [tex]\( 100^\circ 48' \)[/tex].