Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which composition of similarity transformations maps polygon [tex]\( ABCD \)[/tex] to polygon [tex]\( A'B'C'D' \)[/tex], we should evaluate the options given:
1. A dilation with a scale factor of [tex]\(\frac{1}{4}\)[/tex] and then a rotation:
- A dilation with a scale factor of [tex]\(\frac{1}{4}\)[/tex] would reduce the size of the polygon to one-fourth of its original size.
- Following the dilation, performing a rotation would rotate the already reduced-sized polygon by a certain angle around a fixed point. This does not involve any shifting of the position other than the rotational shift.
2. A dilation with a scale factor of [tex]\(\frac{1}{4}\)[/tex] and then a translation:
- Similarly, a dilation with a scale factor of [tex]\(\frac{1}{4}\)[/tex] would reduce the size of the polygon.
- Following the dilation, performing a translation would move (or shift) the entire reduced-sized polygon to a different location without changing its orientation.
3. A dilation with a scale factor of 4 and then a rotation:
- A dilation with a scale factor of 4 would increase the size of the polygon to four times its original size.
- Following the dilation, performing a rotation rotates the larger polygon around a fixed point. This also does not involve any shifting of the position other than the rotational shift.
4. A dilation with a scale factor of 4 and then a translation:
- A dilation with a scale factor of 4 would increase the size of the polygon to four times its original size.
- Following the dilation, performing a translation shifts (or moves) the entire larger polygon to a different location without changing its orientation.
Given that the correct composition of transformations is a dilation with a scale factor of 4 and then a translation, it means we are looking at option 4:
- The polygon [tex]\(ABCD\)[/tex] is first enlarged by a factor of 4 to become 4 times its original size.
- Then, the newly resized polygon is translated, which means moved to a different position without altering its orientation.
Thus, the appropriate composition of similarity transformations that maps polygon [tex]\(ABCD\)[/tex] to polygon [tex]\(A'B'C'D'\)[/tex] is:
A dilation with a scale factor of 4 and then a translation.
1. A dilation with a scale factor of [tex]\(\frac{1}{4}\)[/tex] and then a rotation:
- A dilation with a scale factor of [tex]\(\frac{1}{4}\)[/tex] would reduce the size of the polygon to one-fourth of its original size.
- Following the dilation, performing a rotation would rotate the already reduced-sized polygon by a certain angle around a fixed point. This does not involve any shifting of the position other than the rotational shift.
2. A dilation with a scale factor of [tex]\(\frac{1}{4}\)[/tex] and then a translation:
- Similarly, a dilation with a scale factor of [tex]\(\frac{1}{4}\)[/tex] would reduce the size of the polygon.
- Following the dilation, performing a translation would move (or shift) the entire reduced-sized polygon to a different location without changing its orientation.
3. A dilation with a scale factor of 4 and then a rotation:
- A dilation with a scale factor of 4 would increase the size of the polygon to four times its original size.
- Following the dilation, performing a rotation rotates the larger polygon around a fixed point. This also does not involve any shifting of the position other than the rotational shift.
4. A dilation with a scale factor of 4 and then a translation:
- A dilation with a scale factor of 4 would increase the size of the polygon to four times its original size.
- Following the dilation, performing a translation shifts (or moves) the entire larger polygon to a different location without changing its orientation.
Given that the correct composition of transformations is a dilation with a scale factor of 4 and then a translation, it means we are looking at option 4:
- The polygon [tex]\(ABCD\)[/tex] is first enlarged by a factor of 4 to become 4 times its original size.
- Then, the newly resized polygon is translated, which means moved to a different position without altering its orientation.
Thus, the appropriate composition of similarity transformations that maps polygon [tex]\(ABCD\)[/tex] to polygon [tex]\(A'B'C'D'\)[/tex] is:
A dilation with a scale factor of 4 and then a translation.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.