Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's solve this problem step by step.
### Part 1: Finding the Derivative
Given the function:
[tex]\[ y = 2x^2 - 8x\sqrt{x} + 8x + 1 \][/tex]
To find the derivative [tex]\(\frac{dy}{dx}\)[/tex]:
1. Rewrite [tex]\( \sqrt{x} \)[/tex] as [tex]\( x^{1/2} \)[/tex].
2. Differentiate each term with respect to [tex]\( x \)[/tex].
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^2) - \frac{d}{dx}(8x^{3/2}) + \frac{d}{dx}(8x) + \frac{d}{dx}(1) \][/tex]
Performing the differentiation:
[tex]\[ \frac{d}{dx}(2x^2) = 4x \][/tex]
[tex]\[ \frac{d}{dx}(8x^{3/2}) = 8 \cdot \frac{3}{2} x^{1/2} = 12x^{1/2} \][/tex]
[tex]\[ \frac{d}{dx}(8x) = 8 \][/tex]
[tex]\[ \frac{d}{dx}(1) = 0 \][/tex]
So, the derivative is:
[tex]\[ \frac{dy}{dx} = 4x - 12\sqrt{x} + 8 \][/tex]
### Part 2: Finding the Stationary Points
Stationary points occur where [tex]\(\frac{dy}{dx} = 0\)[/tex].
Setting the derivative equal to zero:
[tex]\[ 4x - 12\sqrt{x} + 8 = 0 \][/tex]
To solve this equation, let [tex]\( u = \sqrt{x} \)[/tex]. Then [tex]\( x = u^2 \)[/tex].
Substituting [tex]\( u \)[/tex]:
[tex]\[ 4u^2 - 12u + 8 = 0 \][/tex]
This is a quadratic equation in [tex]\( u \)[/tex]:
[tex]\[ 4u^2 - 12u + 8 = 0 \][/tex]
Dividing by 4 to simplify:
[tex]\[ u^2 - 3u + 2 = 0 \][/tex]
Factoring the quadratic:
[tex]\[ (u - 1)(u - 2) = 0 \][/tex]
Thus, [tex]\( u = 1 \)[/tex] or [tex]\( u = 2 \)[/tex]. Converting back to [tex]\( x \)[/tex]:
[tex]\[ \sqrt{x} = 1 \implies x = 1 \][/tex]
[tex]\[ \sqrt{x} = 2 \implies x = 4 \][/tex]
So, the stationary points are at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex].
To find the corresponding [tex]\( y \)[/tex] values:
For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 2(1)^2 - 8(1)\sqrt{1} + 8(1) + 1 = 2 - 8 + 8 + 1 = 3 \][/tex]
For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 2(4)^2 - 8(4)\sqrt{4} + 8(4) + 1 = 2(16) - 8(4)(2) + 32 + 1 = 32 - 64 + 32 + 1 = 1 \][/tex]
Thus, the stationary points are:
[tex]\[ (1, 3) \quad \text{and} \quad (4, 1) \][/tex]
### Part 3: Determining the Nature of Each Stationary Point
To determine the nature of each stationary point, we use the second derivative test. Let's find the second derivative.
[tex]\[ \frac{d^2y}{dx^2} = \frac{d}{dx}(4x - 12\sqrt{x} + 8) \][/tex]
Differentiating term by term:
[tex]\[ \frac{d}{dx}(4x) = 4 \][/tex]
[tex]\[ \frac{d}{dx}(-12\sqrt{x}) = -12 \cdot \frac{1}{2} x^{-1/2} = -6x^{-1/2} \][/tex]
[tex]\[ \frac{d}{dx}(8) = 0 \][/tex]
So, the second derivative is:
[tex]\[ \frac{d^2y}{dx^2} = 4 - 6x^{-1/2} \][/tex]
We now evaluate the second derivative at the stationary points.
For [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{d^2y}{dx^2} \Bigg|_{x=1} = 4 - 6(1)^{-1/2} = 4 - 6 = -2 \][/tex]
Since [tex]\(\frac{d^2y}{dx^2}\)[/tex] at [tex]\( x = 1 \)[/tex] is negative, this point is a local maximum.
For [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{d^2y}{dx^2} \Bigg|_{x=4} = 4 - 6(4)^{-1/2} = 4 - 3 = 1 \][/tex]
Since [tex]\(\frac{d^2y}{dx^2}\)[/tex] at [tex]\( x = 4 \)[/tex] is positive, this point is a local minimum.
### Summary
1. The derivative [tex]\(\frac{dy}{dx}\)[/tex] is:
[tex]\[ \frac{dy}{dx} = 4x - 12\sqrt{x} + 8 \][/tex]
2. The stationary points are:
[tex]\[ (1, 3) \quad \text{and} \quad (4, 1) \][/tex]
3. The nature of these points are:
[tex]\[ (1, 3) \quad \text{is a local maximum} \][/tex]
[tex]\[ (4, 1) \quad \text{is a local minimum} \][/tex]
### Part 1: Finding the Derivative
Given the function:
[tex]\[ y = 2x^2 - 8x\sqrt{x} + 8x + 1 \][/tex]
To find the derivative [tex]\(\frac{dy}{dx}\)[/tex]:
1. Rewrite [tex]\( \sqrt{x} \)[/tex] as [tex]\( x^{1/2} \)[/tex].
2. Differentiate each term with respect to [tex]\( x \)[/tex].
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^2) - \frac{d}{dx}(8x^{3/2}) + \frac{d}{dx}(8x) + \frac{d}{dx}(1) \][/tex]
Performing the differentiation:
[tex]\[ \frac{d}{dx}(2x^2) = 4x \][/tex]
[tex]\[ \frac{d}{dx}(8x^{3/2}) = 8 \cdot \frac{3}{2} x^{1/2} = 12x^{1/2} \][/tex]
[tex]\[ \frac{d}{dx}(8x) = 8 \][/tex]
[tex]\[ \frac{d}{dx}(1) = 0 \][/tex]
So, the derivative is:
[tex]\[ \frac{dy}{dx} = 4x - 12\sqrt{x} + 8 \][/tex]
### Part 2: Finding the Stationary Points
Stationary points occur where [tex]\(\frac{dy}{dx} = 0\)[/tex].
Setting the derivative equal to zero:
[tex]\[ 4x - 12\sqrt{x} + 8 = 0 \][/tex]
To solve this equation, let [tex]\( u = \sqrt{x} \)[/tex]. Then [tex]\( x = u^2 \)[/tex].
Substituting [tex]\( u \)[/tex]:
[tex]\[ 4u^2 - 12u + 8 = 0 \][/tex]
This is a quadratic equation in [tex]\( u \)[/tex]:
[tex]\[ 4u^2 - 12u + 8 = 0 \][/tex]
Dividing by 4 to simplify:
[tex]\[ u^2 - 3u + 2 = 0 \][/tex]
Factoring the quadratic:
[tex]\[ (u - 1)(u - 2) = 0 \][/tex]
Thus, [tex]\( u = 1 \)[/tex] or [tex]\( u = 2 \)[/tex]. Converting back to [tex]\( x \)[/tex]:
[tex]\[ \sqrt{x} = 1 \implies x = 1 \][/tex]
[tex]\[ \sqrt{x} = 2 \implies x = 4 \][/tex]
So, the stationary points are at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex].
To find the corresponding [tex]\( y \)[/tex] values:
For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 2(1)^2 - 8(1)\sqrt{1} + 8(1) + 1 = 2 - 8 + 8 + 1 = 3 \][/tex]
For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 2(4)^2 - 8(4)\sqrt{4} + 8(4) + 1 = 2(16) - 8(4)(2) + 32 + 1 = 32 - 64 + 32 + 1 = 1 \][/tex]
Thus, the stationary points are:
[tex]\[ (1, 3) \quad \text{and} \quad (4, 1) \][/tex]
### Part 3: Determining the Nature of Each Stationary Point
To determine the nature of each stationary point, we use the second derivative test. Let's find the second derivative.
[tex]\[ \frac{d^2y}{dx^2} = \frac{d}{dx}(4x - 12\sqrt{x} + 8) \][/tex]
Differentiating term by term:
[tex]\[ \frac{d}{dx}(4x) = 4 \][/tex]
[tex]\[ \frac{d}{dx}(-12\sqrt{x}) = -12 \cdot \frac{1}{2} x^{-1/2} = -6x^{-1/2} \][/tex]
[tex]\[ \frac{d}{dx}(8) = 0 \][/tex]
So, the second derivative is:
[tex]\[ \frac{d^2y}{dx^2} = 4 - 6x^{-1/2} \][/tex]
We now evaluate the second derivative at the stationary points.
For [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{d^2y}{dx^2} \Bigg|_{x=1} = 4 - 6(1)^{-1/2} = 4 - 6 = -2 \][/tex]
Since [tex]\(\frac{d^2y}{dx^2}\)[/tex] at [tex]\( x = 1 \)[/tex] is negative, this point is a local maximum.
For [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{d^2y}{dx^2} \Bigg|_{x=4} = 4 - 6(4)^{-1/2} = 4 - 3 = 1 \][/tex]
Since [tex]\(\frac{d^2y}{dx^2}\)[/tex] at [tex]\( x = 4 \)[/tex] is positive, this point is a local minimum.
### Summary
1. The derivative [tex]\(\frac{dy}{dx}\)[/tex] is:
[tex]\[ \frac{dy}{dx} = 4x - 12\sqrt{x} + 8 \][/tex]
2. The stationary points are:
[tex]\[ (1, 3) \quad \text{and} \quad (4, 1) \][/tex]
3. The nature of these points are:
[tex]\[ (1, 3) \quad \text{is a local maximum} \][/tex]
[tex]\[ (4, 1) \quad \text{is a local minimum} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.