Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Section 1 - Differentiation

Q1. A curve has the equation [tex]y = 2x^2 - 8x\sqrt{x} + 8x + 1[/tex] for [tex]x \geq 0[/tex].

i. Find the value of [tex]\frac{dy}{dx}[/tex].

ii. Find the coordinates of all the stationary points.

iii. Determine the nature of each stationary point.


Sagot :

Let's solve this problem step by step.

### Part 1: Finding the Derivative
Given the function:
[tex]\[ y = 2x^2 - 8x\sqrt{x} + 8x + 1 \][/tex]

To find the derivative [tex]\(\frac{dy}{dx}\)[/tex]:

1. Rewrite [tex]\( \sqrt{x} \)[/tex] as [tex]\( x^{1/2} \)[/tex].
2. Differentiate each term with respect to [tex]\( x \)[/tex].

[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^2) - \frac{d}{dx}(8x^{3/2}) + \frac{d}{dx}(8x) + \frac{d}{dx}(1) \][/tex]

Performing the differentiation:

[tex]\[ \frac{d}{dx}(2x^2) = 4x \][/tex]

[tex]\[ \frac{d}{dx}(8x^{3/2}) = 8 \cdot \frac{3}{2} x^{1/2} = 12x^{1/2} \][/tex]

[tex]\[ \frac{d}{dx}(8x) = 8 \][/tex]

[tex]\[ \frac{d}{dx}(1) = 0 \][/tex]

So, the derivative is:

[tex]\[ \frac{dy}{dx} = 4x - 12\sqrt{x} + 8 \][/tex]

### Part 2: Finding the Stationary Points
Stationary points occur where [tex]\(\frac{dy}{dx} = 0\)[/tex].

Setting the derivative equal to zero:
[tex]\[ 4x - 12\sqrt{x} + 8 = 0 \][/tex]

To solve this equation, let [tex]\( u = \sqrt{x} \)[/tex]. Then [tex]\( x = u^2 \)[/tex].

Substituting [tex]\( u \)[/tex]:
[tex]\[ 4u^2 - 12u + 8 = 0 \][/tex]

This is a quadratic equation in [tex]\( u \)[/tex]:

[tex]\[ 4u^2 - 12u + 8 = 0 \][/tex]

Dividing by 4 to simplify:

[tex]\[ u^2 - 3u + 2 = 0 \][/tex]

Factoring the quadratic:

[tex]\[ (u - 1)(u - 2) = 0 \][/tex]

Thus, [tex]\( u = 1 \)[/tex] or [tex]\( u = 2 \)[/tex]. Converting back to [tex]\( x \)[/tex]:

[tex]\[ \sqrt{x} = 1 \implies x = 1 \][/tex]
[tex]\[ \sqrt{x} = 2 \implies x = 4 \][/tex]

So, the stationary points are at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex].

To find the corresponding [tex]\( y \)[/tex] values:

For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 2(1)^2 - 8(1)\sqrt{1} + 8(1) + 1 = 2 - 8 + 8 + 1 = 3 \][/tex]

For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 2(4)^2 - 8(4)\sqrt{4} + 8(4) + 1 = 2(16) - 8(4)(2) + 32 + 1 = 32 - 64 + 32 + 1 = 1 \][/tex]

Thus, the stationary points are:
[tex]\[ (1, 3) \quad \text{and} \quad (4, 1) \][/tex]

### Part 3: Determining the Nature of Each Stationary Point
To determine the nature of each stationary point, we use the second derivative test. Let's find the second derivative.

[tex]\[ \frac{d^2y}{dx^2} = \frac{d}{dx}(4x - 12\sqrt{x} + 8) \][/tex]

Differentiating term by term:

[tex]\[ \frac{d}{dx}(4x) = 4 \][/tex]

[tex]\[ \frac{d}{dx}(-12\sqrt{x}) = -12 \cdot \frac{1}{2} x^{-1/2} = -6x^{-1/2} \][/tex]

[tex]\[ \frac{d}{dx}(8) = 0 \][/tex]

So, the second derivative is:

[tex]\[ \frac{d^2y}{dx^2} = 4 - 6x^{-1/2} \][/tex]

We now evaluate the second derivative at the stationary points.

For [tex]\( x = 1 \)[/tex]:

[tex]\[ \frac{d^2y}{dx^2} \Bigg|_{x=1} = 4 - 6(1)^{-1/2} = 4 - 6 = -2 \][/tex]

Since [tex]\(\frac{d^2y}{dx^2}\)[/tex] at [tex]\( x = 1 \)[/tex] is negative, this point is a local maximum.

For [tex]\( x = 4 \)[/tex]:

[tex]\[ \frac{d^2y}{dx^2} \Bigg|_{x=4} = 4 - 6(4)^{-1/2} = 4 - 3 = 1 \][/tex]

Since [tex]\(\frac{d^2y}{dx^2}\)[/tex] at [tex]\( x = 4 \)[/tex] is positive, this point is a local minimum.

### Summary
1. The derivative [tex]\(\frac{dy}{dx}\)[/tex] is:
[tex]\[ \frac{dy}{dx} = 4x - 12\sqrt{x} + 8 \][/tex]

2. The stationary points are:
[tex]\[ (1, 3) \quad \text{and} \quad (4, 1) \][/tex]

3. The nature of these points are:
[tex]\[ (1, 3) \quad \text{is a local maximum} \][/tex]
[tex]\[ (4, 1) \quad \text{is a local minimum} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.