Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the conditional probability that a senior citizen uses email given that they use text messaging, we can use the provided data. Let's walk through the steps to solve this problem.
1. Understand the given information:
- We have a table of joint and marginal frequencies for the poll results.
- The relevant pieces of information are:
- The probability that a person uses both text messaging and email is 0.17.
- The probability that a person uses text messaging is 0.83.
2. Define the conditional probability:
- The conditional probability of event A given event B is denoted as P(A|B) and is calculated using the formula:
[tex]\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Here, event A is "using email" and event B is "using text messaging".
3. Substitute the given values into the formula:
- [tex]\( P(\text{A} \cap \text{B}) = \text{Probability of using both email and text messaging} = 0.17 \)[/tex]
- [tex]\( P(\text{B}) = \text{Probability of using text messaging} = 0.83 \)[/tex]
4. Calculate the conditional probability:
[tex]\[ P(\text{using email} \mid \text{using text messaging}) = \frac{0.17}{0.83} = 0.20481927710843376 \][/tex]
5. Round the result to the nearest hundredth:
- To round 0.20481927710843376 to the nearest hundredth, we look at the third decimal place, which is 4.
- Since 4 is less than 5, we round down, making the result 0.20.
Conclusion:
The probability that a senior citizen uses email given that they use text messaging is approximately 0.20.
1. Understand the given information:
- We have a table of joint and marginal frequencies for the poll results.
- The relevant pieces of information are:
- The probability that a person uses both text messaging and email is 0.17.
- The probability that a person uses text messaging is 0.83.
2. Define the conditional probability:
- The conditional probability of event A given event B is denoted as P(A|B) and is calculated using the formula:
[tex]\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Here, event A is "using email" and event B is "using text messaging".
3. Substitute the given values into the formula:
- [tex]\( P(\text{A} \cap \text{B}) = \text{Probability of using both email and text messaging} = 0.17 \)[/tex]
- [tex]\( P(\text{B}) = \text{Probability of using text messaging} = 0.83 \)[/tex]
4. Calculate the conditional probability:
[tex]\[ P(\text{using email} \mid \text{using text messaging}) = \frac{0.17}{0.83} = 0.20481927710843376 \][/tex]
5. Round the result to the nearest hundredth:
- To round 0.20481927710843376 to the nearest hundredth, we look at the third decimal place, which is 4.
- Since 4 is less than 5, we round down, making the result 0.20.
Conclusion:
The probability that a senior citizen uses email given that they use text messaging is approximately 0.20.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.