Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the conditional probability that a senior citizen uses email given that they use text messaging, we can use the provided data. Let's walk through the steps to solve this problem.
1. Understand the given information:
- We have a table of joint and marginal frequencies for the poll results.
- The relevant pieces of information are:
- The probability that a person uses both text messaging and email is 0.17.
- The probability that a person uses text messaging is 0.83.
2. Define the conditional probability:
- The conditional probability of event A given event B is denoted as P(A|B) and is calculated using the formula:
[tex]\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Here, event A is "using email" and event B is "using text messaging".
3. Substitute the given values into the formula:
- [tex]\( P(\text{A} \cap \text{B}) = \text{Probability of using both email and text messaging} = 0.17 \)[/tex]
- [tex]\( P(\text{B}) = \text{Probability of using text messaging} = 0.83 \)[/tex]
4. Calculate the conditional probability:
[tex]\[ P(\text{using email} \mid \text{using text messaging}) = \frac{0.17}{0.83} = 0.20481927710843376 \][/tex]
5. Round the result to the nearest hundredth:
- To round 0.20481927710843376 to the nearest hundredth, we look at the third decimal place, which is 4.
- Since 4 is less than 5, we round down, making the result 0.20.
Conclusion:
The probability that a senior citizen uses email given that they use text messaging is approximately 0.20.
1. Understand the given information:
- We have a table of joint and marginal frequencies for the poll results.
- The relevant pieces of information are:
- The probability that a person uses both text messaging and email is 0.17.
- The probability that a person uses text messaging is 0.83.
2. Define the conditional probability:
- The conditional probability of event A given event B is denoted as P(A|B) and is calculated using the formula:
[tex]\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Here, event A is "using email" and event B is "using text messaging".
3. Substitute the given values into the formula:
- [tex]\( P(\text{A} \cap \text{B}) = \text{Probability of using both email and text messaging} = 0.17 \)[/tex]
- [tex]\( P(\text{B}) = \text{Probability of using text messaging} = 0.83 \)[/tex]
4. Calculate the conditional probability:
[tex]\[ P(\text{using email} \mid \text{using text messaging}) = \frac{0.17}{0.83} = 0.20481927710843376 \][/tex]
5. Round the result to the nearest hundredth:
- To round 0.20481927710843376 to the nearest hundredth, we look at the third decimal place, which is 4.
- Since 4 is less than 5, we round down, making the result 0.20.
Conclusion:
The probability that a senior citizen uses email given that they use text messaging is approximately 0.20.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.