Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the order of the reaction and calculate the rate constant, we start by analyzing the given concentration data for cyclopropane at different times.
Given data:
- Times (in minutes): [tex]\(0, 5.0, 10.0, 15.0, 20.0\)[/tex]
- Concentrations of cyclopropane (in mol/L): [tex]\(0.098, 0.080, 0.066, 0.054, 0.0\)[/tex]
We are given the following analysis results:
1. Times: [tex]\(0, 5.0, 10.0, 15.0, 20.0\)[/tex]
2. Concentrations: [tex]\(0.098, 0.080, 0.066, 0.054, 0.0\)[/tex]
3. Natural Logarithm of Concentrations: [tex]\(\ln (0.098), \ln(0.080), \ln(0.066), \ln(0.054)\)[/tex]
Corresponding values: [tex]\(-2.3228, -2.5257, -2.7181, -2.9188\)[/tex]
(Note: The last concentration is zero and thus its logarithm isn't calculated)
From the given results, we identify:
4. Slope of the regression line: [tex]\(-0.039606\)[/tex]
5. Intercept of the regression line: [tex]\(-2.3242987\)[/tex]
6. Rate constant [tex]\(k\)[/tex]: [tex]\(0.039606 \, \text{min}^{-1}\)[/tex]
### Solution Steps:
1. Checking the Reaction Order:
- We assume the reaction is first-order and thus plot [tex]\(\ln[\text{Cyclopropane}]\)[/tex] vs. time. If the plot is linear, it's a first-order reaction.
- The results show a linear relationship between [tex]\(\ln[\text{Cyclopropane}]\)[/tex] and time, confirming first-order reaction behavior.
2. Calculating the logarithms of the given concentrations:
[tex]\[ \begin{aligned} \ln(0.098) & \approx -2.3228, \\ \ln(0.080) & \approx -2.5257, \\ \ln(0.066) & \approx -2.7181, \\ \ln(0.054) & \approx -2.9188. \end{aligned} \][/tex]
3. Performing Linear Regression:
- Using the times [tex]\(0, 5.0, 10.0, 15.0\)[/tex] and the corresponding logarithms:
[tex]\[ \begin{aligned} t (min) & : 0, 5.0, 10.0, 15.0, \\ \ln[\text{Cyclopropane}] & : -2.3228, -2.5257, -2.7181, -2.9188. \end{aligned} \][/tex]
- The slope ([tex]\(m\)[/tex]) of the linear fit line can be determined:
[tex]\[ \text{slope} \approx -0.039606. \][/tex]
4. Calculating the Rate Constant [tex]\(k\)[/tex]:
- For a first-order reaction, the rate constant [tex]\(k\)[/tex] is the negative of the slope of the [tex]\(\ln[\text{Cyclopropane}]\)[/tex] vs. time plot.
[tex]\[ k = - (\text{slope}) = 0.039606 \, \text{min}^{-1}. \][/tex]
### Conclusion:
- The reaction is confirmed to be first-order.
- The rate constant [tex]\(k\)[/tex] for the decomposition of cyclopropane is [tex]\(0.039606 \, \text{min}^{-1}\)[/tex].
Given data:
- Times (in minutes): [tex]\(0, 5.0, 10.0, 15.0, 20.0\)[/tex]
- Concentrations of cyclopropane (in mol/L): [tex]\(0.098, 0.080, 0.066, 0.054, 0.0\)[/tex]
We are given the following analysis results:
1. Times: [tex]\(0, 5.0, 10.0, 15.0, 20.0\)[/tex]
2. Concentrations: [tex]\(0.098, 0.080, 0.066, 0.054, 0.0\)[/tex]
3. Natural Logarithm of Concentrations: [tex]\(\ln (0.098), \ln(0.080), \ln(0.066), \ln(0.054)\)[/tex]
Corresponding values: [tex]\(-2.3228, -2.5257, -2.7181, -2.9188\)[/tex]
(Note: The last concentration is zero and thus its logarithm isn't calculated)
From the given results, we identify:
4. Slope of the regression line: [tex]\(-0.039606\)[/tex]
5. Intercept of the regression line: [tex]\(-2.3242987\)[/tex]
6. Rate constant [tex]\(k\)[/tex]: [tex]\(0.039606 \, \text{min}^{-1}\)[/tex]
### Solution Steps:
1. Checking the Reaction Order:
- We assume the reaction is first-order and thus plot [tex]\(\ln[\text{Cyclopropane}]\)[/tex] vs. time. If the plot is linear, it's a first-order reaction.
- The results show a linear relationship between [tex]\(\ln[\text{Cyclopropane}]\)[/tex] and time, confirming first-order reaction behavior.
2. Calculating the logarithms of the given concentrations:
[tex]\[ \begin{aligned} \ln(0.098) & \approx -2.3228, \\ \ln(0.080) & \approx -2.5257, \\ \ln(0.066) & \approx -2.7181, \\ \ln(0.054) & \approx -2.9188. \end{aligned} \][/tex]
3. Performing Linear Regression:
- Using the times [tex]\(0, 5.0, 10.0, 15.0\)[/tex] and the corresponding logarithms:
[tex]\[ \begin{aligned} t (min) & : 0, 5.0, 10.0, 15.0, \\ \ln[\text{Cyclopropane}] & : -2.3228, -2.5257, -2.7181, -2.9188. \end{aligned} \][/tex]
- The slope ([tex]\(m\)[/tex]) of the linear fit line can be determined:
[tex]\[ \text{slope} \approx -0.039606. \][/tex]
4. Calculating the Rate Constant [tex]\(k\)[/tex]:
- For a first-order reaction, the rate constant [tex]\(k\)[/tex] is the negative of the slope of the [tex]\(\ln[\text{Cyclopropane}]\)[/tex] vs. time plot.
[tex]\[ k = - (\text{slope}) = 0.039606 \, \text{min}^{-1}. \][/tex]
### Conclusion:
- The reaction is confirmed to be first-order.
- The rate constant [tex]\(k\)[/tex] for the decomposition of cyclopropane is [tex]\(0.039606 \, \text{min}^{-1}\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.