Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To address the given questions about the curve with the equation [tex]\( x^2 y^2 + x y^4 = 12 \)[/tex]:
### Part (i): Show that [tex]\(\frac{d y}{d x} = -\frac{2 x y + y^3}{2 x^2 + 4 x y^2}\)[/tex]
First, we need to find the derivative [tex]\(\frac{dy}{dx}\)[/tex]. We can use implicit differentiation on the given equation [tex]\( x^2 y^2 + x y^4 = 12 \)[/tex].
1. Differentiate both sides of the equation with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{d}{dx}(x^2 y^2 + x y^4) = \frac{d}{dx}(12) \][/tex]
2. Apply the product rule to differentiate each term on the left-hand side:
[tex]\[ \frac{d}{dx}(x^2 y^2) + \frac{d}{dx}(x y^4) = 0 \][/tex]
For the first term [tex]\( x^2 y^2 \)[/tex]:
[tex]\[ \frac{d}{dx}(x^2 y^2) = 2x y^2 + x^2 \cdot 2y \frac{dy}{dx} \][/tex]
This simplifies to:
[tex]\[ 2x y^2 + 2x^2 y \frac{dy}{dx} \][/tex]
For the second term [tex]\( x y^4 \)[/tex]:
[tex]\[ \frac{d}{dx}(x y^4) = y^4 + x \cdot 4y^3 \frac{dy}{dx} \][/tex]
Now, combining these results:
[tex]\[ 2x y^2 + 2x^2 y \frac{dy}{dx} + y^4 + 4x y^3 \frac{dy}{dx} = 0 \][/tex]
3. Collect terms involving [tex]\(\frac{dy}{dx}\)[/tex] on one side:
[tex]\[ 2x y^2 + y^4 = -2x^2 y \frac{dy}{dx} - 4x y^3 \frac{dy}{dx} \][/tex]
[tex]\[ 2x y^2 + y^4 = \frac{dy}{dx} (-2x^2 y - 4x y^3) \][/tex]
4. Solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{2x y^2 + y^4}{-2x^2 y - 4x y^3} \][/tex]
Simplifying the denominator:
[tex]\[ \frac{dy}{dx} = - \frac{2x y^2 + y^3}{2x^2 + 4x y^2} \][/tex]
Therefore, we have shown that:
[tex]\[ \frac{dy}{dx} = -\frac{2 x y + y^3}{2 x^2 + 4 x y^2} \][/tex]
### Part (ii): Find the equation of the tangent to the curve when [tex]\( y = 1 \)[/tex] and [tex]\( x > 0 \)[/tex]
1. Substitute [tex]\( y = 1 \)[/tex] into the original equation to find the value of [tex]\( x \)[/tex]:
[tex]\[ x^2 (1)^2 + x (1)^4 = 12 \][/tex]
[tex]\[ x^2 + x = 12 \][/tex]
Rearrange to solve the quadratic equation:
[tex]\[ x^2 + x - 12 = 0 \][/tex]
2. Solve the quadratic equation using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -12 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 48}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm 7}{2} \][/tex]
[tex]\[ x = \frac{6}{2} = 3 \quad \text{(since \( x > 0 \))} \][/tex]
3. Find the slope of the tangent line at [tex]\( (x, y) = (3, 1) \)[/tex]:
Substitute [tex]\( x = 3 \)[/tex] and [tex]\( y = 1 \)[/tex] into the derivative:
[tex]\[ \frac{dy}{dx} = -\frac{2x y + y^3}{2x^2 + 4x y^2} \][/tex]
[tex]\[ \left. \frac{dy}{dx} \right|_{(3, 1)} = -\frac{2 \cdot 3 \cdot 1 + 1^3}{2 \cdot 3^2 + 4 \cdot 3 \cdot 1} \][/tex]
[tex]\[ \left. \frac{dy}{dx} \right|_{(3, 1)} = -\frac{6 + 1}{18 + 12} \][/tex]
[tex]\[ \left. \frac{dy}{dx} \right|_{(3, 1)} = -\frac{7}{30} \][/tex]
4. Write the equation of the tangent line. The point-slope formula for the tangent line is:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Where [tex]\((x_1, y_1) = (3, 1)\)[/tex] and [tex]\( m = -\frac{7}{30}\)[/tex]:
[tex]\[ y - 1 = -\frac{7}{30}(x - 3) \][/tex]
Distribute and simplify:
[tex]\[ y - 1 = -\frac{7}{30}x + \frac{7 \cdot 3}{30} \][/tex]
[tex]\[ y - 1 = -\frac{7}{30}x + \frac{21}{30} \][/tex]
[tex]\[ y = -\frac{7}{30}x + \frac{21}{30} + 1 \][/tex]
[tex]\[ y = -\frac{7}{30}x + \frac{21}{30} + \frac{30}{30} \][/tex]
[tex]\[ y = -\frac{7}{30}x + \frac{51}{30} \][/tex]
Therefore, the equation of the tangent line is:
[tex]\[ y = -\frac{7}{30}x + \frac{51}{30} \][/tex]
### Part (i): Show that [tex]\(\frac{d y}{d x} = -\frac{2 x y + y^3}{2 x^2 + 4 x y^2}\)[/tex]
First, we need to find the derivative [tex]\(\frac{dy}{dx}\)[/tex]. We can use implicit differentiation on the given equation [tex]\( x^2 y^2 + x y^4 = 12 \)[/tex].
1. Differentiate both sides of the equation with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{d}{dx}(x^2 y^2 + x y^4) = \frac{d}{dx}(12) \][/tex]
2. Apply the product rule to differentiate each term on the left-hand side:
[tex]\[ \frac{d}{dx}(x^2 y^2) + \frac{d}{dx}(x y^4) = 0 \][/tex]
For the first term [tex]\( x^2 y^2 \)[/tex]:
[tex]\[ \frac{d}{dx}(x^2 y^2) = 2x y^2 + x^2 \cdot 2y \frac{dy}{dx} \][/tex]
This simplifies to:
[tex]\[ 2x y^2 + 2x^2 y \frac{dy}{dx} \][/tex]
For the second term [tex]\( x y^4 \)[/tex]:
[tex]\[ \frac{d}{dx}(x y^4) = y^4 + x \cdot 4y^3 \frac{dy}{dx} \][/tex]
Now, combining these results:
[tex]\[ 2x y^2 + 2x^2 y \frac{dy}{dx} + y^4 + 4x y^3 \frac{dy}{dx} = 0 \][/tex]
3. Collect terms involving [tex]\(\frac{dy}{dx}\)[/tex] on one side:
[tex]\[ 2x y^2 + y^4 = -2x^2 y \frac{dy}{dx} - 4x y^3 \frac{dy}{dx} \][/tex]
[tex]\[ 2x y^2 + y^4 = \frac{dy}{dx} (-2x^2 y - 4x y^3) \][/tex]
4. Solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{2x y^2 + y^4}{-2x^2 y - 4x y^3} \][/tex]
Simplifying the denominator:
[tex]\[ \frac{dy}{dx} = - \frac{2x y^2 + y^3}{2x^2 + 4x y^2} \][/tex]
Therefore, we have shown that:
[tex]\[ \frac{dy}{dx} = -\frac{2 x y + y^3}{2 x^2 + 4 x y^2} \][/tex]
### Part (ii): Find the equation of the tangent to the curve when [tex]\( y = 1 \)[/tex] and [tex]\( x > 0 \)[/tex]
1. Substitute [tex]\( y = 1 \)[/tex] into the original equation to find the value of [tex]\( x \)[/tex]:
[tex]\[ x^2 (1)^2 + x (1)^4 = 12 \][/tex]
[tex]\[ x^2 + x = 12 \][/tex]
Rearrange to solve the quadratic equation:
[tex]\[ x^2 + x - 12 = 0 \][/tex]
2. Solve the quadratic equation using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -12 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 48}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm 7}{2} \][/tex]
[tex]\[ x = \frac{6}{2} = 3 \quad \text{(since \( x > 0 \))} \][/tex]
3. Find the slope of the tangent line at [tex]\( (x, y) = (3, 1) \)[/tex]:
Substitute [tex]\( x = 3 \)[/tex] and [tex]\( y = 1 \)[/tex] into the derivative:
[tex]\[ \frac{dy}{dx} = -\frac{2x y + y^3}{2x^2 + 4x y^2} \][/tex]
[tex]\[ \left. \frac{dy}{dx} \right|_{(3, 1)} = -\frac{2 \cdot 3 \cdot 1 + 1^3}{2 \cdot 3^2 + 4 \cdot 3 \cdot 1} \][/tex]
[tex]\[ \left. \frac{dy}{dx} \right|_{(3, 1)} = -\frac{6 + 1}{18 + 12} \][/tex]
[tex]\[ \left. \frac{dy}{dx} \right|_{(3, 1)} = -\frac{7}{30} \][/tex]
4. Write the equation of the tangent line. The point-slope formula for the tangent line is:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Where [tex]\((x_1, y_1) = (3, 1)\)[/tex] and [tex]\( m = -\frac{7}{30}\)[/tex]:
[tex]\[ y - 1 = -\frac{7}{30}(x - 3) \][/tex]
Distribute and simplify:
[tex]\[ y - 1 = -\frac{7}{30}x + \frac{7 \cdot 3}{30} \][/tex]
[tex]\[ y - 1 = -\frac{7}{30}x + \frac{21}{30} \][/tex]
[tex]\[ y = -\frac{7}{30}x + \frac{21}{30} + 1 \][/tex]
[tex]\[ y = -\frac{7}{30}x + \frac{21}{30} + \frac{30}{30} \][/tex]
[tex]\[ y = -\frac{7}{30}x + \frac{51}{30} \][/tex]
Therefore, the equation of the tangent line is:
[tex]\[ y = -\frac{7}{30}x + \frac{51}{30} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.