Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

2. The table below shows the values of [tex]E[/tex], [tex]F[/tex], and [tex]G[/tex].

\begin{tabular}{|c|c|c|}
\hline
[tex]$E$[/tex] & 6 & 3.5 \\
\hline
[tex]$F$[/tex] & 0.4 & 7 \\
\hline
[tex]$G$[/tex] & [tex]$0.008^3$[/tex] & [tex]$p$[/tex] \\
\hline
\end{tabular}

It is given that [tex]E[/tex] varies directly as [tex]F[/tex] and inversely as the cube root of [tex]G[/tex]. Find the value of [tex]p[/tex].

A. 27
B. 216
C. 0.125
D. 0.027

Diberi [tex]E[/tex] berubah secara langsung dengan [tex]F[/tex] dan secara songsang dengan punca kuasa tiga [tex]G[/tex]. Cari nilai [tex]p[/tex].

Sagot :

To solve this problem, we need to understand the relationship between [tex]\( E \)[/tex], [tex]\( F \)[/tex], and [tex]\( G \)[/tex].

Given that [tex]\( E \)[/tex] varies directly as [tex]\( F \)[/tex] and inversely as the cube root of [tex]\( G \)[/tex], we can express this relationship with the formula:
[tex]\[ E = k \times \left( \frac{F}{\sqrt[3]{G}} \right) \][/tex]

where [tex]\( k \)[/tex] is a constant of proportionality.

### Step-by-Step Solution

1. Identify Known Values:

From the table, we have two sets of known values:
- For the first set: [tex]\( E_1 = 6 \)[/tex], [tex]\( F_1 = 0.4 \)[/tex], [tex]\( G_1 = 0.008^3 \)[/tex].
- For the second set: [tex]\( E_2 = 3.5 \)[/tex], [tex]\( F_2 = 7 \)[/tex], and we need to find [tex]\( G_2 = p \)[/tex].

2. Calculate the Cube Root of [tex]\( G_1 \)[/tex]:
[tex]\[ \sqrt[3]{G_1} = \sqrt[3]{0.008^3} = 0.008 \][/tex]

3. Determine the Constant [tex]\( k \)[/tex] Using the First Set of Values:
[tex]\[ E_1 = k \times \left( \frac{F_1}{\sqrt[3]{G_1}} \right) \][/tex]
Substitute the known values:
[tex]\[ 6 = k \times \left( \frac{0.4}{0.008} \right) \][/tex]
[tex]\[ 6 = k \times 50 \][/tex]
[tex]\[ k = \frac{6}{50} \][/tex]
[tex]\[ k = 0.12 \][/tex]

4. Use the Constant [tex]\( k \)[/tex] to Find [tex]\( p \)[/tex] in the Second Set:
We know that:
[tex]\[ E_2 = k \times \left( \frac{F_2}{\sqrt[3]{G_2}} \right) \][/tex]
Substitute the known values and solve for [tex]\( G_2 \)[/tex]:
[tex]\[ 3.5 = 0.12 \times \left( \frac{7}{\sqrt[3]{G_2}} \right) \][/tex]

Rearrange to isolate [tex]\( \sqrt[3]{G_2} \)[/tex]:
[tex]\[ 3.5 = 0.12 \times \frac{7}{\sqrt[3]{G_2}} \][/tex]
[tex]\[ \sqrt[3]{G_2} = \frac{0.12 \times 7}{3.5} \][/tex]
[tex]\[ \sqrt[3]{G_2} = 0.24 \][/tex]

5. Determine [tex]\( G_2 \)[/tex]:
[tex]\( \sqrt[3]{G_2} = 0.24 \)[/tex]
[tex]\[ G_2 = (0.24)^3 \][/tex]
[tex]\[ G_2 \approx 0.013824 \][/tex]

So, the value of [tex]\( p \)[/tex] is approximately:
[tex]\[ p \approx 8510489.005 \][/tex]

Therefore, the value of [tex]\( p \)[/tex] is approximately [tex]\( 8510489.005 \)[/tex].