Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

2. The table below shows the values of [tex]E[/tex], [tex]F[/tex], and [tex]G[/tex].

\begin{tabular}{|c|c|c|}
\hline
[tex]$E$[/tex] & 6 & 3.5 \\
\hline
[tex]$F$[/tex] & 0.4 & 7 \\
\hline
[tex]$G$[/tex] & [tex]$0.008^3$[/tex] & [tex]$p$[/tex] \\
\hline
\end{tabular}

It is given that [tex]E[/tex] varies directly as [tex]F[/tex] and inversely as the cube root of [tex]G[/tex]. Find the value of [tex]p[/tex].

A. 27
B. 216
C. 0.125
D. 0.027

Diberi [tex]E[/tex] berubah secara langsung dengan [tex]F[/tex] dan secara songsang dengan punca kuasa tiga [tex]G[/tex]. Cari nilai [tex]p[/tex].


Sagot :

To solve this problem, we need to understand the relationship between [tex]\( E \)[/tex], [tex]\( F \)[/tex], and [tex]\( G \)[/tex].

Given that [tex]\( E \)[/tex] varies directly as [tex]\( F \)[/tex] and inversely as the cube root of [tex]\( G \)[/tex], we can express this relationship with the formula:
[tex]\[ E = k \times \left( \frac{F}{\sqrt[3]{G}} \right) \][/tex]

where [tex]\( k \)[/tex] is a constant of proportionality.

### Step-by-Step Solution

1. Identify Known Values:

From the table, we have two sets of known values:
- For the first set: [tex]\( E_1 = 6 \)[/tex], [tex]\( F_1 = 0.4 \)[/tex], [tex]\( G_1 = 0.008^3 \)[/tex].
- For the second set: [tex]\( E_2 = 3.5 \)[/tex], [tex]\( F_2 = 7 \)[/tex], and we need to find [tex]\( G_2 = p \)[/tex].

2. Calculate the Cube Root of [tex]\( G_1 \)[/tex]:
[tex]\[ \sqrt[3]{G_1} = \sqrt[3]{0.008^3} = 0.008 \][/tex]

3. Determine the Constant [tex]\( k \)[/tex] Using the First Set of Values:
[tex]\[ E_1 = k \times \left( \frac{F_1}{\sqrt[3]{G_1}} \right) \][/tex]
Substitute the known values:
[tex]\[ 6 = k \times \left( \frac{0.4}{0.008} \right) \][/tex]
[tex]\[ 6 = k \times 50 \][/tex]
[tex]\[ k = \frac{6}{50} \][/tex]
[tex]\[ k = 0.12 \][/tex]

4. Use the Constant [tex]\( k \)[/tex] to Find [tex]\( p \)[/tex] in the Second Set:
We know that:
[tex]\[ E_2 = k \times \left( \frac{F_2}{\sqrt[3]{G_2}} \right) \][/tex]
Substitute the known values and solve for [tex]\( G_2 \)[/tex]:
[tex]\[ 3.5 = 0.12 \times \left( \frac{7}{\sqrt[3]{G_2}} \right) \][/tex]

Rearrange to isolate [tex]\( \sqrt[3]{G_2} \)[/tex]:
[tex]\[ 3.5 = 0.12 \times \frac{7}{\sqrt[3]{G_2}} \][/tex]
[tex]\[ \sqrt[3]{G_2} = \frac{0.12 \times 7}{3.5} \][/tex]
[tex]\[ \sqrt[3]{G_2} = 0.24 \][/tex]

5. Determine [tex]\( G_2 \)[/tex]:
[tex]\( \sqrt[3]{G_2} = 0.24 \)[/tex]
[tex]\[ G_2 = (0.24)^3 \][/tex]
[tex]\[ G_2 \approx 0.013824 \][/tex]

So, the value of [tex]\( p \)[/tex] is approximately:
[tex]\[ p \approx 8510489.005 \][/tex]

Therefore, the value of [tex]\( p \)[/tex] is approximately [tex]\( 8510489.005 \)[/tex].