Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Given the table:

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
$E$ & 6 & 8.5 \\
\hline
$F$ & 0.4 & 7 \\
\hline
$G$ & 0.008 & $P$ \\
\hline
\end{tabular}
\][/tex]

It is given that [tex]$E$[/tex] varies directly as [tex]$F$[/tex] and inversely as the cube root of [tex]$G$[/tex]. Find the value of [tex]$P$[/tex].

Sagot :

To solve the problem, we need to use the relationship that [tex]\(E\)[/tex] varies directly as [tex]\(F\)[/tex] and inversely as the cube root of [tex]\(G\)[/tex]. The mathematical representation of this relationship can be written as:

[tex]\[ E = k \cdot \frac{F}{\sqrt[3]{G}} \][/tex]

where [tex]\(k\)[/tex] is the constant of variation.

First, we need to determine the value of [tex]\(k\)[/tex] using the first set of given values from the table:

[tex]\[ E = 6 \][/tex]
[tex]\[ F = 0.4 \][/tex]
[tex]\[ G = 0.008 \][/tex]

Substituting these values into the equation, we get:

[tex]\[ 6 = k \cdot \frac{0.4}{\sqrt[3]{0.008}} \][/tex]

The cube root of [tex]\(0.008\)[/tex] is [tex]\(0.2\)[/tex], so the equation becomes:

[tex]\[ 6 = k \cdot \frac{0.4}{0.2} \][/tex]

[tex]\[ 6 = k \cdot 2 \][/tex]

Solving for [tex]\(k\)[/tex], we find:

[tex]\[ k = \frac{6}{2} = 3 \][/tex]

Now that we have the value of [tex]\(k\)[/tex], we can use the second set of values to find [tex]\(P\)[/tex], where [tex]\(G = P\)[/tex]:

[tex]\[ E = 8.5 \][/tex]
[tex]\[ F = 7 \][/tex]

Substituting these values into the equation with the known constant [tex]\(k = 3\)[/tex], we get:

[tex]\[ 8.5 = 3 \cdot \frac{7}{\sqrt[3]{P}} \][/tex]

Solving for [tex]\(\sqrt[3]{P}\)[/tex]:

[tex]\[ 8.5 = 21 \div \sqrt[3]{P} \][/tex]

[tex]\[ \sqrt[3]{P} = \frac{21}{8.5} \][/tex]

[tex]\[ \sqrt[3]{P} \approx 2.470588 \][/tex]

Now, to find [tex]\(P\)[/tex], we cube both sides:

[tex]\[ P = (2.470588)^3 \][/tex]

[tex]\[ P \approx 15.07999185833504 \][/tex]

Thus, the value of [tex]\(P\)[/tex] is approximately [tex]\(15.08\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.