Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem, we need to use the relationship that [tex]\(E\)[/tex] varies directly as [tex]\(F\)[/tex] and inversely as the cube root of [tex]\(G\)[/tex]. The mathematical representation of this relationship can be written as:
[tex]\[ E = k \cdot \frac{F}{\sqrt[3]{G}} \][/tex]
where [tex]\(k\)[/tex] is the constant of variation.
First, we need to determine the value of [tex]\(k\)[/tex] using the first set of given values from the table:
[tex]\[ E = 6 \][/tex]
[tex]\[ F = 0.4 \][/tex]
[tex]\[ G = 0.008 \][/tex]
Substituting these values into the equation, we get:
[tex]\[ 6 = k \cdot \frac{0.4}{\sqrt[3]{0.008}} \][/tex]
The cube root of [tex]\(0.008\)[/tex] is [tex]\(0.2\)[/tex], so the equation becomes:
[tex]\[ 6 = k \cdot \frac{0.4}{0.2} \][/tex]
[tex]\[ 6 = k \cdot 2 \][/tex]
Solving for [tex]\(k\)[/tex], we find:
[tex]\[ k = \frac{6}{2} = 3 \][/tex]
Now that we have the value of [tex]\(k\)[/tex], we can use the second set of values to find [tex]\(P\)[/tex], where [tex]\(G = P\)[/tex]:
[tex]\[ E = 8.5 \][/tex]
[tex]\[ F = 7 \][/tex]
Substituting these values into the equation with the known constant [tex]\(k = 3\)[/tex], we get:
[tex]\[ 8.5 = 3 \cdot \frac{7}{\sqrt[3]{P}} \][/tex]
Solving for [tex]\(\sqrt[3]{P}\)[/tex]:
[tex]\[ 8.5 = 21 \div \sqrt[3]{P} \][/tex]
[tex]\[ \sqrt[3]{P} = \frac{21}{8.5} \][/tex]
[tex]\[ \sqrt[3]{P} \approx 2.470588 \][/tex]
Now, to find [tex]\(P\)[/tex], we cube both sides:
[tex]\[ P = (2.470588)^3 \][/tex]
[tex]\[ P \approx 15.07999185833504 \][/tex]
Thus, the value of [tex]\(P\)[/tex] is approximately [tex]\(15.08\)[/tex].
[tex]\[ E = k \cdot \frac{F}{\sqrt[3]{G}} \][/tex]
where [tex]\(k\)[/tex] is the constant of variation.
First, we need to determine the value of [tex]\(k\)[/tex] using the first set of given values from the table:
[tex]\[ E = 6 \][/tex]
[tex]\[ F = 0.4 \][/tex]
[tex]\[ G = 0.008 \][/tex]
Substituting these values into the equation, we get:
[tex]\[ 6 = k \cdot \frac{0.4}{\sqrt[3]{0.008}} \][/tex]
The cube root of [tex]\(0.008\)[/tex] is [tex]\(0.2\)[/tex], so the equation becomes:
[tex]\[ 6 = k \cdot \frac{0.4}{0.2} \][/tex]
[tex]\[ 6 = k \cdot 2 \][/tex]
Solving for [tex]\(k\)[/tex], we find:
[tex]\[ k = \frac{6}{2} = 3 \][/tex]
Now that we have the value of [tex]\(k\)[/tex], we can use the second set of values to find [tex]\(P\)[/tex], where [tex]\(G = P\)[/tex]:
[tex]\[ E = 8.5 \][/tex]
[tex]\[ F = 7 \][/tex]
Substituting these values into the equation with the known constant [tex]\(k = 3\)[/tex], we get:
[tex]\[ 8.5 = 3 \cdot \frac{7}{\sqrt[3]{P}} \][/tex]
Solving for [tex]\(\sqrt[3]{P}\)[/tex]:
[tex]\[ 8.5 = 21 \div \sqrt[3]{P} \][/tex]
[tex]\[ \sqrt[3]{P} = \frac{21}{8.5} \][/tex]
[tex]\[ \sqrt[3]{P} \approx 2.470588 \][/tex]
Now, to find [tex]\(P\)[/tex], we cube both sides:
[tex]\[ P = (2.470588)^3 \][/tex]
[tex]\[ P \approx 15.07999185833504 \][/tex]
Thus, the value of [tex]\(P\)[/tex] is approximately [tex]\(15.08\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.