Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the problem, we need to use the relationship that [tex]\(E\)[/tex] varies directly as [tex]\(F\)[/tex] and inversely as the cube root of [tex]\(G\)[/tex]. The mathematical representation of this relationship can be written as:
[tex]\[ E = k \cdot \frac{F}{\sqrt[3]{G}} \][/tex]
where [tex]\(k\)[/tex] is the constant of variation.
First, we need to determine the value of [tex]\(k\)[/tex] using the first set of given values from the table:
[tex]\[ E = 6 \][/tex]
[tex]\[ F = 0.4 \][/tex]
[tex]\[ G = 0.008 \][/tex]
Substituting these values into the equation, we get:
[tex]\[ 6 = k \cdot \frac{0.4}{\sqrt[3]{0.008}} \][/tex]
The cube root of [tex]\(0.008\)[/tex] is [tex]\(0.2\)[/tex], so the equation becomes:
[tex]\[ 6 = k \cdot \frac{0.4}{0.2} \][/tex]
[tex]\[ 6 = k \cdot 2 \][/tex]
Solving for [tex]\(k\)[/tex], we find:
[tex]\[ k = \frac{6}{2} = 3 \][/tex]
Now that we have the value of [tex]\(k\)[/tex], we can use the second set of values to find [tex]\(P\)[/tex], where [tex]\(G = P\)[/tex]:
[tex]\[ E = 8.5 \][/tex]
[tex]\[ F = 7 \][/tex]
Substituting these values into the equation with the known constant [tex]\(k = 3\)[/tex], we get:
[tex]\[ 8.5 = 3 \cdot \frac{7}{\sqrt[3]{P}} \][/tex]
Solving for [tex]\(\sqrt[3]{P}\)[/tex]:
[tex]\[ 8.5 = 21 \div \sqrt[3]{P} \][/tex]
[tex]\[ \sqrt[3]{P} = \frac{21}{8.5} \][/tex]
[tex]\[ \sqrt[3]{P} \approx 2.470588 \][/tex]
Now, to find [tex]\(P\)[/tex], we cube both sides:
[tex]\[ P = (2.470588)^3 \][/tex]
[tex]\[ P \approx 15.07999185833504 \][/tex]
Thus, the value of [tex]\(P\)[/tex] is approximately [tex]\(15.08\)[/tex].
[tex]\[ E = k \cdot \frac{F}{\sqrt[3]{G}} \][/tex]
where [tex]\(k\)[/tex] is the constant of variation.
First, we need to determine the value of [tex]\(k\)[/tex] using the first set of given values from the table:
[tex]\[ E = 6 \][/tex]
[tex]\[ F = 0.4 \][/tex]
[tex]\[ G = 0.008 \][/tex]
Substituting these values into the equation, we get:
[tex]\[ 6 = k \cdot \frac{0.4}{\sqrt[3]{0.008}} \][/tex]
The cube root of [tex]\(0.008\)[/tex] is [tex]\(0.2\)[/tex], so the equation becomes:
[tex]\[ 6 = k \cdot \frac{0.4}{0.2} \][/tex]
[tex]\[ 6 = k \cdot 2 \][/tex]
Solving for [tex]\(k\)[/tex], we find:
[tex]\[ k = \frac{6}{2} = 3 \][/tex]
Now that we have the value of [tex]\(k\)[/tex], we can use the second set of values to find [tex]\(P\)[/tex], where [tex]\(G = P\)[/tex]:
[tex]\[ E = 8.5 \][/tex]
[tex]\[ F = 7 \][/tex]
Substituting these values into the equation with the known constant [tex]\(k = 3\)[/tex], we get:
[tex]\[ 8.5 = 3 \cdot \frac{7}{\sqrt[3]{P}} \][/tex]
Solving for [tex]\(\sqrt[3]{P}\)[/tex]:
[tex]\[ 8.5 = 21 \div \sqrt[3]{P} \][/tex]
[tex]\[ \sqrt[3]{P} = \frac{21}{8.5} \][/tex]
[tex]\[ \sqrt[3]{P} \approx 2.470588 \][/tex]
Now, to find [tex]\(P\)[/tex], we cube both sides:
[tex]\[ P = (2.470588)^3 \][/tex]
[tex]\[ P \approx 15.07999185833504 \][/tex]
Thus, the value of [tex]\(P\)[/tex] is approximately [tex]\(15.08\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.