Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem, we need to use the relationship that [tex]\(E\)[/tex] varies directly as [tex]\(F\)[/tex] and inversely as the cube root of [tex]\(G\)[/tex]. The mathematical representation of this relationship can be written as:
[tex]\[ E = k \cdot \frac{F}{\sqrt[3]{G}} \][/tex]
where [tex]\(k\)[/tex] is the constant of variation.
First, we need to determine the value of [tex]\(k\)[/tex] using the first set of given values from the table:
[tex]\[ E = 6 \][/tex]
[tex]\[ F = 0.4 \][/tex]
[tex]\[ G = 0.008 \][/tex]
Substituting these values into the equation, we get:
[tex]\[ 6 = k \cdot \frac{0.4}{\sqrt[3]{0.008}} \][/tex]
The cube root of [tex]\(0.008\)[/tex] is [tex]\(0.2\)[/tex], so the equation becomes:
[tex]\[ 6 = k \cdot \frac{0.4}{0.2} \][/tex]
[tex]\[ 6 = k \cdot 2 \][/tex]
Solving for [tex]\(k\)[/tex], we find:
[tex]\[ k = \frac{6}{2} = 3 \][/tex]
Now that we have the value of [tex]\(k\)[/tex], we can use the second set of values to find [tex]\(P\)[/tex], where [tex]\(G = P\)[/tex]:
[tex]\[ E = 8.5 \][/tex]
[tex]\[ F = 7 \][/tex]
Substituting these values into the equation with the known constant [tex]\(k = 3\)[/tex], we get:
[tex]\[ 8.5 = 3 \cdot \frac{7}{\sqrt[3]{P}} \][/tex]
Solving for [tex]\(\sqrt[3]{P}\)[/tex]:
[tex]\[ 8.5 = 21 \div \sqrt[3]{P} \][/tex]
[tex]\[ \sqrt[3]{P} = \frac{21}{8.5} \][/tex]
[tex]\[ \sqrt[3]{P} \approx 2.470588 \][/tex]
Now, to find [tex]\(P\)[/tex], we cube both sides:
[tex]\[ P = (2.470588)^3 \][/tex]
[tex]\[ P \approx 15.07999185833504 \][/tex]
Thus, the value of [tex]\(P\)[/tex] is approximately [tex]\(15.08\)[/tex].
[tex]\[ E = k \cdot \frac{F}{\sqrt[3]{G}} \][/tex]
where [tex]\(k\)[/tex] is the constant of variation.
First, we need to determine the value of [tex]\(k\)[/tex] using the first set of given values from the table:
[tex]\[ E = 6 \][/tex]
[tex]\[ F = 0.4 \][/tex]
[tex]\[ G = 0.008 \][/tex]
Substituting these values into the equation, we get:
[tex]\[ 6 = k \cdot \frac{0.4}{\sqrt[3]{0.008}} \][/tex]
The cube root of [tex]\(0.008\)[/tex] is [tex]\(0.2\)[/tex], so the equation becomes:
[tex]\[ 6 = k \cdot \frac{0.4}{0.2} \][/tex]
[tex]\[ 6 = k \cdot 2 \][/tex]
Solving for [tex]\(k\)[/tex], we find:
[tex]\[ k = \frac{6}{2} = 3 \][/tex]
Now that we have the value of [tex]\(k\)[/tex], we can use the second set of values to find [tex]\(P\)[/tex], where [tex]\(G = P\)[/tex]:
[tex]\[ E = 8.5 \][/tex]
[tex]\[ F = 7 \][/tex]
Substituting these values into the equation with the known constant [tex]\(k = 3\)[/tex], we get:
[tex]\[ 8.5 = 3 \cdot \frac{7}{\sqrt[3]{P}} \][/tex]
Solving for [tex]\(\sqrt[3]{P}\)[/tex]:
[tex]\[ 8.5 = 21 \div \sqrt[3]{P} \][/tex]
[tex]\[ \sqrt[3]{P} = \frac{21}{8.5} \][/tex]
[tex]\[ \sqrt[3]{P} \approx 2.470588 \][/tex]
Now, to find [tex]\(P\)[/tex], we cube both sides:
[tex]\[ P = (2.470588)^3 \][/tex]
[tex]\[ P \approx 15.07999185833504 \][/tex]
Thus, the value of [tex]\(P\)[/tex] is approximately [tex]\(15.08\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.