Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find [tex]\((f \cdot g)(x)\)[/tex] given [tex]\(f(x) = 2x - 3\)[/tex] and [tex]\(g(x) = 3x - 1\)[/tex], we need to multiply these two functions together.
Let's go through the multiplication step-by-step:
1. Write down the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ f(x) = 2x - 3 \][/tex]
[tex]\[ g(x) = 3x - 1 \][/tex]
2. To find the product [tex]\((f \cdot g)(x)\)[/tex], multiply the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f \cdot g)(x) = (2x - 3)(3x - 1) \][/tex]
3. Use the distributive property (also known as FOIL method for binomials) to multiply each term in the first polynomial by each term in the second polynomial:
[tex]\[ (2x - 3)(3x - 1) = 2x \cdot 3x + 2x \cdot (-1) + (-3) \cdot 3x + (-3) \cdot (-1) \][/tex]
4. Perform the multiplications:
[tex]\[ 2x \cdot 3x = 6x^2 \][/tex]
[tex]\[ 2x \cdot (-1) = -2x \][/tex]
[tex]\[ (-3) \cdot 3x = -9x \][/tex]
[tex]\[ (-3) \cdot (-1) = 3 \][/tex]
5. Combine all the terms:
[tex]\[ (f \cdot g)(x) = 6x^2 - 2x - 9x + 3 \][/tex]
6. Simplify by combining like terms ([tex]\(-2x\)[/tex] and [tex]\(-9x\)[/tex]):
[tex]\[ (f \cdot g)(x) = 6x^2 - 11x + 3 \][/tex]
Thus, the product of the functions [tex]\(f(x) = 2x - 3\)[/tex] and [tex]\(g(x) = 3x - 1\)[/tex] is:
[tex]\[ (f \cdot g)(x) = 6x^2 - 11x + 3 \][/tex]
The correct choice from the given options is:
[tex]\[ 6x^2 - 11x + 3 \][/tex]
Let's go through the multiplication step-by-step:
1. Write down the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ f(x) = 2x - 3 \][/tex]
[tex]\[ g(x) = 3x - 1 \][/tex]
2. To find the product [tex]\((f \cdot g)(x)\)[/tex], multiply the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f \cdot g)(x) = (2x - 3)(3x - 1) \][/tex]
3. Use the distributive property (also known as FOIL method for binomials) to multiply each term in the first polynomial by each term in the second polynomial:
[tex]\[ (2x - 3)(3x - 1) = 2x \cdot 3x + 2x \cdot (-1) + (-3) \cdot 3x + (-3) \cdot (-1) \][/tex]
4. Perform the multiplications:
[tex]\[ 2x \cdot 3x = 6x^2 \][/tex]
[tex]\[ 2x \cdot (-1) = -2x \][/tex]
[tex]\[ (-3) \cdot 3x = -9x \][/tex]
[tex]\[ (-3) \cdot (-1) = 3 \][/tex]
5. Combine all the terms:
[tex]\[ (f \cdot g)(x) = 6x^2 - 2x - 9x + 3 \][/tex]
6. Simplify by combining like terms ([tex]\(-2x\)[/tex] and [tex]\(-9x\)[/tex]):
[tex]\[ (f \cdot g)(x) = 6x^2 - 11x + 3 \][/tex]
Thus, the product of the functions [tex]\(f(x) = 2x - 3\)[/tex] and [tex]\(g(x) = 3x - 1\)[/tex] is:
[tex]\[ (f \cdot g)(x) = 6x^2 - 11x + 3 \][/tex]
The correct choice from the given options is:
[tex]\[ 6x^2 - 11x + 3 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.