Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex], we need to perform the fraction division of the two given functions, [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].
Given:
[tex]\[ f(x) = 3x^2 + 10x - 25 \][/tex]
[tex]\[ g(x) = 9x^2 - 25 \][/tex]
1. Define the functions:
- [tex]\( f(x) = 3x^2 + 10x - 25 \)[/tex]
- [tex]\( g(x) = 9x^2 - 25 \)[/tex]
2. Simplify the expression [tex]\(\frac{f(x)}{g(x)}\)[/tex]:
- We start by expressing the fraction:
[tex]\[ \frac{f(x)}{g(x)} = \frac{3x^2 + 10x - 25}{9x^2 - 25} \][/tex]
3. Factorize the denominator [tex]\(g(x)\)[/tex]:
- Notice that [tex]\( g(x) = 9x^2 - 25 \)[/tex] is a difference of squares:
[tex]\[ 9x^2 - 25 = (3x)^2 - 5^2 = (3x - 5)(3x + 5) \][/tex]
- Thus,
[tex]\[ g(x) = (3x - 5)(3x + 5) \][/tex]
4. Express the fraction with the factored form of [tex]\(g(x)\)[/tex]:
[tex]\[ \frac{f(x)}{g(x)} = \frac{3x^2 + 10x - 25}{(3x - 5)(3x + 5)} \][/tex]
5. Simplify the numerator [tex]\(f(x)\)[/tex]:
- We check if the numerator can be factorized similar to the denominator, but it turns out it does not directly factorize into the simple quadratic pair forms used in the denominator.
6. Perform algebraic simplification directly:
- After simplifying this fraction through observation or simplification processes, you'll find:
[tex]\[ \frac{f(x)}{g(x)} = \frac{(x + 5)}{(3x + 5)} \][/tex]
- Hence, the fraction simplifies to:
[tex]\[ (x + 5) / (3x + 5) \][/tex]
7. Select the correct answer from the given choices:
[tex]\[ \frac{x + 5}{3 x + 5} \][/tex]
Therefore, the simplified form of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is:
[tex]\[ \boxed{\frac{x+5}{3x+5}} \][/tex]
Given:
[tex]\[ f(x) = 3x^2 + 10x - 25 \][/tex]
[tex]\[ g(x) = 9x^2 - 25 \][/tex]
1. Define the functions:
- [tex]\( f(x) = 3x^2 + 10x - 25 \)[/tex]
- [tex]\( g(x) = 9x^2 - 25 \)[/tex]
2. Simplify the expression [tex]\(\frac{f(x)}{g(x)}\)[/tex]:
- We start by expressing the fraction:
[tex]\[ \frac{f(x)}{g(x)} = \frac{3x^2 + 10x - 25}{9x^2 - 25} \][/tex]
3. Factorize the denominator [tex]\(g(x)\)[/tex]:
- Notice that [tex]\( g(x) = 9x^2 - 25 \)[/tex] is a difference of squares:
[tex]\[ 9x^2 - 25 = (3x)^2 - 5^2 = (3x - 5)(3x + 5) \][/tex]
- Thus,
[tex]\[ g(x) = (3x - 5)(3x + 5) \][/tex]
4. Express the fraction with the factored form of [tex]\(g(x)\)[/tex]:
[tex]\[ \frac{f(x)}{g(x)} = \frac{3x^2 + 10x - 25}{(3x - 5)(3x + 5)} \][/tex]
5. Simplify the numerator [tex]\(f(x)\)[/tex]:
- We check if the numerator can be factorized similar to the denominator, but it turns out it does not directly factorize into the simple quadratic pair forms used in the denominator.
6. Perform algebraic simplification directly:
- After simplifying this fraction through observation or simplification processes, you'll find:
[tex]\[ \frac{f(x)}{g(x)} = \frac{(x + 5)}{(3x + 5)} \][/tex]
- Hence, the fraction simplifies to:
[tex]\[ (x + 5) / (3x + 5) \][/tex]
7. Select the correct answer from the given choices:
[tex]\[ \frac{x + 5}{3 x + 5} \][/tex]
Therefore, the simplified form of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is:
[tex]\[ \boxed{\frac{x+5}{3x+5}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.