At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's break down each part of the question step-by-step using the given sets [tex]\( U \)[/tex], [tex]\( A \)[/tex], and [tex]\( B \)[/tex].
### (i) Verification: Given Sets
We have the universal set [tex]\( U \)[/tex], set [tex]\( A \)[/tex], and set [tex]\( B \)[/tex] defined as:
- [tex]\( U = \{1, 2, 3, \ldots, 9\} \)[/tex]
- [tex]\( A = \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
- [tex]\( B = \{4, 6, 8\} \)[/tex]
Let's verify the different operations on these sets.
#### a) Union of A and B: [tex]\( A \cup B \)[/tex]
The union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is defined as the set of elements that are in [tex]\( A \)[/tex], or [tex]\( B \)[/tex], or in both.
[tex]\( A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \cup \{4, 6, 8\} \)[/tex]
Combining all unique elements from both sets, we get:
[tex]\[ A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \][/tex]
This verifies that the union of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{1, 2, 3, 4, 6, 7, 8\} \)[/tex].
#### b) Intersection of A and B: [tex]\( A \cap B \)[/tex]
The intersection of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is defined as the set of elements that are common to both [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
[tex]\( A \cap B = \{1, 2, 3, 4, 6, 7, 8\} \cap \{4, 6, 8\} \)[/tex]
Identifying common elements, we get:
[tex]\[ A \cap B = \{4, 6, 8\} \][/tex]
This verifies that the intersection of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{4, 6, 8\} \)[/tex].
#### c) Complement of A: [tex]\( A^c \)[/tex]
The complement of set [tex]\( A \)[/tex] in the universal set [tex]\( U \)[/tex] is defined as the set of elements that are in [tex]\( U \)[/tex] but not in [tex]\( A \)[/tex].
[tex]\( A^c = U - A = \{1, 2, 3, \ldots, 9\} - \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
Removing all elements of [tex]\( A \)[/tex] from [tex]\( U \)[/tex], we are left with:
[tex]\[ A^c = \{9, 5\} \][/tex]
This verifies that the complement of [tex]\( A \)[/tex] is [tex]\( \{9, 5\} \)[/tex].
#### d) Complement of B: [tex]\( B^c \)[/tex]
The complement of set [tex]\( B \)[/tex] in the universal set [tex]\( U \)[/tex] is defined as the set of elements that are in [tex]\( U \)[/tex] but not in [tex]\( B \)[/tex].
[tex]\( B^c = U - B = \{1, 2, 3, \ldots, 9\} - \{4, 6, 8\} \)[/tex]
Removing all elements of [tex]\( B \)[/tex] from [tex]\( U \)[/tex], we are left with:
[tex]\[ B^c = \{1, 2, 3, 5, 7, 9\} \][/tex]
This verifies that the complement of [tex]\( B \)[/tex] is [tex]\( \{1, 2, 3, 5, 7, 9\} \)[/tex].
By verifying each operation on the sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] with respect to the universal set [tex]\( U \)[/tex], we can confirm that:
- [tex]\( A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
- [tex]\( A \cap B = \{4, 6, 8\} \)[/tex]
- [tex]\( A^c = \{9, 5\} \)[/tex]
- [tex]\( B^c = \{1, 2, 3, 5, 7, 9\} \)[/tex]
### (i) Verification: Given Sets
We have the universal set [tex]\( U \)[/tex], set [tex]\( A \)[/tex], and set [tex]\( B \)[/tex] defined as:
- [tex]\( U = \{1, 2, 3, \ldots, 9\} \)[/tex]
- [tex]\( A = \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
- [tex]\( B = \{4, 6, 8\} \)[/tex]
Let's verify the different operations on these sets.
#### a) Union of A and B: [tex]\( A \cup B \)[/tex]
The union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is defined as the set of elements that are in [tex]\( A \)[/tex], or [tex]\( B \)[/tex], or in both.
[tex]\( A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \cup \{4, 6, 8\} \)[/tex]
Combining all unique elements from both sets, we get:
[tex]\[ A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \][/tex]
This verifies that the union of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{1, 2, 3, 4, 6, 7, 8\} \)[/tex].
#### b) Intersection of A and B: [tex]\( A \cap B \)[/tex]
The intersection of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is defined as the set of elements that are common to both [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
[tex]\( A \cap B = \{1, 2, 3, 4, 6, 7, 8\} \cap \{4, 6, 8\} \)[/tex]
Identifying common elements, we get:
[tex]\[ A \cap B = \{4, 6, 8\} \][/tex]
This verifies that the intersection of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{4, 6, 8\} \)[/tex].
#### c) Complement of A: [tex]\( A^c \)[/tex]
The complement of set [tex]\( A \)[/tex] in the universal set [tex]\( U \)[/tex] is defined as the set of elements that are in [tex]\( U \)[/tex] but not in [tex]\( A \)[/tex].
[tex]\( A^c = U - A = \{1, 2, 3, \ldots, 9\} - \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
Removing all elements of [tex]\( A \)[/tex] from [tex]\( U \)[/tex], we are left with:
[tex]\[ A^c = \{9, 5\} \][/tex]
This verifies that the complement of [tex]\( A \)[/tex] is [tex]\( \{9, 5\} \)[/tex].
#### d) Complement of B: [tex]\( B^c \)[/tex]
The complement of set [tex]\( B \)[/tex] in the universal set [tex]\( U \)[/tex] is defined as the set of elements that are in [tex]\( U \)[/tex] but not in [tex]\( B \)[/tex].
[tex]\( B^c = U - B = \{1, 2, 3, \ldots, 9\} - \{4, 6, 8\} \)[/tex]
Removing all elements of [tex]\( B \)[/tex] from [tex]\( U \)[/tex], we are left with:
[tex]\[ B^c = \{1, 2, 3, 5, 7, 9\} \][/tex]
This verifies that the complement of [tex]\( B \)[/tex] is [tex]\( \{1, 2, 3, 5, 7, 9\} \)[/tex].
By verifying each operation on the sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] with respect to the universal set [tex]\( U \)[/tex], we can confirm that:
- [tex]\( A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
- [tex]\( A \cap B = \{4, 6, 8\} \)[/tex]
- [tex]\( A^c = \{9, 5\} \)[/tex]
- [tex]\( B^c = \{1, 2, 3, 5, 7, 9\} \)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.