Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To analyze the reasonableness of Chayse's results concerning the ultraviolet (UV) ray, we need to verify whether the calculated speed of light from his provided frequency and wavelength data aligns with the known speed of light in a vacuum.
Here are the steps we follow:
1. Identify the given values:
- Frequency ([tex]\( f \)[/tex]) of the UV ray: [tex]\( 1.53 \times 10^{16} \)[/tex] Hz
- Wavelength ([tex]\( \lambda \)[/tex]) of the UV ray: [tex]\( 1.96 \times 10^{-8} \)[/tex] meters
2. Calculate the speed of the UV ray:
The speed of a wave ([tex]\( c \)[/tex]) can be calculated using the formula:
[tex]\[ c = f \times \lambda \][/tex]
Substituting the given values:
[tex]\[ c = (1.53 \times 10^{16} \, \text{Hz}) \times (1.96 \times 10^{-8} \, \text{m}) \][/tex]
Performing the multiplication:
[tex]\[ c = 1.53 \times 1.96 \times 10^{16} \times 10^{-8} \][/tex]
[tex]\[ c = 2.9988 \times 10^8 \, \text{m/s} \][/tex]
Thus, the calculated speed of the UV ray is approximately [tex]\( 299880000 \, \text{m/s} \)[/tex].
3. Compare with the known value:
- The speed of light in a vacuum is approximately [tex]\( 3.00 \times 10^8 \, \text{m/s} \)[/tex].
4. Evaluate the reasonableness:
We assess whether the calculated speed [tex]\( 299880000 \, \text{m/s} \)[/tex] is close enough to the known speed of light [tex]\( 3.00 \times 10^8 \, \text{m/s} \)[/tex].
One approach to this is to check the relative difference:
[tex]\[ \text{Relative difference} = \left| \frac{ \text{calculated speed} - \text{known speed} }{ \text{known speed} } \right| \][/tex]
Substituting the values:
[tex]\[ \text{Relative difference} = \left| \frac{ 299880000 - 300000000 }{ 300000000 } \right| \][/tex]
[tex]\[ \text{Relative difference} = \left| \frac{ -120000 }{ 300000000 } \right| \][/tex]
[tex]\[ \text{Relative difference} = 0.0004 \][/tex]
This results in a relative difference of 0.04%, which is very small and within a reasonable tolerance level of 1%.
Hence, this minute discrepancy signifies that Chayse's findings are highly reasonable and accurately reflect the expected value of the speed of light in a vacuum for the given frequency and wavelength of the UV ray.
Here are the steps we follow:
1. Identify the given values:
- Frequency ([tex]\( f \)[/tex]) of the UV ray: [tex]\( 1.53 \times 10^{16} \)[/tex] Hz
- Wavelength ([tex]\( \lambda \)[/tex]) of the UV ray: [tex]\( 1.96 \times 10^{-8} \)[/tex] meters
2. Calculate the speed of the UV ray:
The speed of a wave ([tex]\( c \)[/tex]) can be calculated using the formula:
[tex]\[ c = f \times \lambda \][/tex]
Substituting the given values:
[tex]\[ c = (1.53 \times 10^{16} \, \text{Hz}) \times (1.96 \times 10^{-8} \, \text{m}) \][/tex]
Performing the multiplication:
[tex]\[ c = 1.53 \times 1.96 \times 10^{16} \times 10^{-8} \][/tex]
[tex]\[ c = 2.9988 \times 10^8 \, \text{m/s} \][/tex]
Thus, the calculated speed of the UV ray is approximately [tex]\( 299880000 \, \text{m/s} \)[/tex].
3. Compare with the known value:
- The speed of light in a vacuum is approximately [tex]\( 3.00 \times 10^8 \, \text{m/s} \)[/tex].
4. Evaluate the reasonableness:
We assess whether the calculated speed [tex]\( 299880000 \, \text{m/s} \)[/tex] is close enough to the known speed of light [tex]\( 3.00 \times 10^8 \, \text{m/s} \)[/tex].
One approach to this is to check the relative difference:
[tex]\[ \text{Relative difference} = \left| \frac{ \text{calculated speed} - \text{known speed} }{ \text{known speed} } \right| \][/tex]
Substituting the values:
[tex]\[ \text{Relative difference} = \left| \frac{ 299880000 - 300000000 }{ 300000000 } \right| \][/tex]
[tex]\[ \text{Relative difference} = \left| \frac{ -120000 }{ 300000000 } \right| \][/tex]
[tex]\[ \text{Relative difference} = 0.0004 \][/tex]
This results in a relative difference of 0.04%, which is very small and within a reasonable tolerance level of 1%.
Hence, this minute discrepancy signifies that Chayse's findings are highly reasonable and accurately reflect the expected value of the speed of light in a vacuum for the given frequency and wavelength of the UV ray.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.