Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve each of these equations step-by-step and find the respective lines that intersect with the graph of [tex]\( y = x^2 - 8x - 7 \)[/tex].
### a) [tex]\( x = 8 + \frac{7}{x} \)[/tex]
To find the corresponding line equation:
1. Multiply both sides by [tex]\( x \)[/tex] to eliminate the fraction:
[tex]\[ x^2 = 8x + 7 \][/tex]
2. Rearrange to form a standard quadratic equation:
[tex]\[ x^2 - 8x - 7 = 0 \][/tex]
3. To solve [tex]\( x = 8 + \frac{7}{x} \)[/tex], we need the points of intersection with [tex]\( y = x \)[/tex]. Hence, maintain:
[tex]\[ y = 8 + \frac{7}{x} \][/tex]
Thus, the equation of the line to draw is:
[tex]\[ y = 8 + \frac{7}{x} \][/tex]
### b) [tex]\( 2x^2 = 16x + 9 \)[/tex]
To find the corresponding line equation:
1. Divide by 2 to simplify:
[tex]\[ x^2 = 8x + \frac{9}{2} \][/tex]
2. Rearrange to:
[tex]\[ x^2 - 8x - \frac{9}{2} = 0 \][/tex]
3. To solve [tex]\( 2x^2 = 16x + 9 \)[/tex], we need the points of intersection with [tex]\( y = 2x^2 \)[/tex]. Hence, maintain:
[tex]\[ y = 16x + 9 \][/tex]
So, the equation of the line to draw is:
[tex]\[ y = 8x + \frac{9}{2} \][/tex]
### c) [tex]\( x^2 = 7 \)[/tex]
To find the corresponding line equation:
1. This is already solved:
[tex]\[ x^2 - 7 = 0 \][/tex]
2. The parabolic form intersecting [tex]\( y = x^2 \)[/tex] remains straightforward:
Thus, it's:
[tex]\[ y = 7 \][/tex]
### d) [tex]\( x = \frac{4}{x-8} \)[/tex]
To find the corresponding line equation:
1. Multiply both sides by [tex]\( x-8 \)[/tex]:
[tex]\[ x(x-8) = 4 \][/tex]
2. Expand and rearrange:
[tex]\[ x^2 - 8x - 4 = 0 \][/tex]
3. To solve [tex]\( x = \frac{4}{x-8} \)[/tex], maintain:
[tex]\[ y = \frac{4}{x-8} \][/tex]
So, the equation of the line to draw is:
[tex]\[ y = \frac{4}{x-8} \][/tex]
### e) [tex]\( 2x - 5 = \frac{14}{x} \)[/tex]
To find the corresponding line equation:
1. Multiply both sides by [tex]\( x \)[/tex]:
[tex]\[ 2x^2 - 5x = 14 \][/tex]
2. Rearrange:
[tex]\[ 2x^2 - 5x - 14 = 0 \][/tex]
3. To solve [tex]\( 2x - 5 = \frac{14}{x} \)[/tex], maintain:
[tex]\[ y = 2x - 5 + \frac{14}{x} \][/tex]
So, the equation of the line to draw is:
[tex]\[ y = 2x - 5 + \frac{14}{x} \][/tex]
These lines, when graphed alongside [tex]\( y = x^2 - 8x - 7 \)[/tex], will visually represent the solutions to the given equations by their points of intersection.
### a) [tex]\( x = 8 + \frac{7}{x} \)[/tex]
To find the corresponding line equation:
1. Multiply both sides by [tex]\( x \)[/tex] to eliminate the fraction:
[tex]\[ x^2 = 8x + 7 \][/tex]
2. Rearrange to form a standard quadratic equation:
[tex]\[ x^2 - 8x - 7 = 0 \][/tex]
3. To solve [tex]\( x = 8 + \frac{7}{x} \)[/tex], we need the points of intersection with [tex]\( y = x \)[/tex]. Hence, maintain:
[tex]\[ y = 8 + \frac{7}{x} \][/tex]
Thus, the equation of the line to draw is:
[tex]\[ y = 8 + \frac{7}{x} \][/tex]
### b) [tex]\( 2x^2 = 16x + 9 \)[/tex]
To find the corresponding line equation:
1. Divide by 2 to simplify:
[tex]\[ x^2 = 8x + \frac{9}{2} \][/tex]
2. Rearrange to:
[tex]\[ x^2 - 8x - \frac{9}{2} = 0 \][/tex]
3. To solve [tex]\( 2x^2 = 16x + 9 \)[/tex], we need the points of intersection with [tex]\( y = 2x^2 \)[/tex]. Hence, maintain:
[tex]\[ y = 16x + 9 \][/tex]
So, the equation of the line to draw is:
[tex]\[ y = 8x + \frac{9}{2} \][/tex]
### c) [tex]\( x^2 = 7 \)[/tex]
To find the corresponding line equation:
1. This is already solved:
[tex]\[ x^2 - 7 = 0 \][/tex]
2. The parabolic form intersecting [tex]\( y = x^2 \)[/tex] remains straightforward:
Thus, it's:
[tex]\[ y = 7 \][/tex]
### d) [tex]\( x = \frac{4}{x-8} \)[/tex]
To find the corresponding line equation:
1. Multiply both sides by [tex]\( x-8 \)[/tex]:
[tex]\[ x(x-8) = 4 \][/tex]
2. Expand and rearrange:
[tex]\[ x^2 - 8x - 4 = 0 \][/tex]
3. To solve [tex]\( x = \frac{4}{x-8} \)[/tex], maintain:
[tex]\[ y = \frac{4}{x-8} \][/tex]
So, the equation of the line to draw is:
[tex]\[ y = \frac{4}{x-8} \][/tex]
### e) [tex]\( 2x - 5 = \frac{14}{x} \)[/tex]
To find the corresponding line equation:
1. Multiply both sides by [tex]\( x \)[/tex]:
[tex]\[ 2x^2 - 5x = 14 \][/tex]
2. Rearrange:
[tex]\[ 2x^2 - 5x - 14 = 0 \][/tex]
3. To solve [tex]\( 2x - 5 = \frac{14}{x} \)[/tex], maintain:
[tex]\[ y = 2x - 5 + \frac{14}{x} \][/tex]
So, the equation of the line to draw is:
[tex]\[ y = 2x - 5 + \frac{14}{x} \][/tex]
These lines, when graphed alongside [tex]\( y = x^2 - 8x - 7 \)[/tex], will visually represent the solutions to the given equations by their points of intersection.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.