Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the correct equation that models the height [tex]\( h \)[/tex] of the tip of the hour hand as a function of time [tex]\( t \)[/tex], we need to analyze the given conditions and how they influence the mathematical model.
1. Maximum and Minimum Heights:
The height varies between 9 feet and 10 feet.
- Maximum height, [tex]\( h_{\text{max}} = 10 \)[/tex] feet.
- Minimum height, [tex]\( h_{\text{min}} = 9 \)[/tex] feet.
2. Amplitude and Midline:
- The amplitude [tex]\( A \)[/tex] is calculated as half the range of the height changes:
[tex]\[ A = \frac{h_{\text{max}} - h_{\text{min}}}{2} = \frac{10 - 9}{2} = 0.5 \ \text{feet} \][/tex]
- The midline [tex]\( C \)[/tex] (average height) is:
[tex]\[ C = \frac{h_{\text{max}} + h_{\text{min}}}{2} = \frac{10 + 9}{2} = 9.5 \ \text{feet} \][/tex]
3. Period of the Function:
- The period of the height function in hours is 24 hours, as the hour hand returns to the same position every 24 hours.
- For cosine functions, the period [tex]\( T \)[/tex] is related to the coefficient [tex]\( B \)[/tex] inside the cosine argument by the equation:
[tex]\[ T = \frac{2\pi}{B} \][/tex]
- Given [tex]\( T = 24 \)[/tex] hours, we solve for [tex]\( B \)[/tex]:
[tex]\[ 24 = \frac{2\pi}{B} \implies B = \frac{2\pi}{24} = \frac{\pi}{12} \][/tex]
4. Final Equation:
- Combine the amplitude, midline, and the coefficient [tex]\( B \)[/tex] into the cosine function:
[tex]\[ h = A \cos(Bt) + C \Rightarrow h = 0.5 \cos \left( \frac{\pi}{12} t \right) + 9.5 \][/tex]
The correct equation that models the height [tex]\( h \)[/tex] of the tip of the hour hand as a function of time [tex]\( t \)[/tex] is:
[tex]\[ h = 0.5 \cos \left( \frac{\pi}{12} t \right) + 9.5 \][/tex]
Therefore, the correct answer to the problem is:
[tex]\[ h = 0.5 \cos \left( \frac{\pi}{12} t \right) + 9.5 \][/tex]
1. Maximum and Minimum Heights:
The height varies between 9 feet and 10 feet.
- Maximum height, [tex]\( h_{\text{max}} = 10 \)[/tex] feet.
- Minimum height, [tex]\( h_{\text{min}} = 9 \)[/tex] feet.
2. Amplitude and Midline:
- The amplitude [tex]\( A \)[/tex] is calculated as half the range of the height changes:
[tex]\[ A = \frac{h_{\text{max}} - h_{\text{min}}}{2} = \frac{10 - 9}{2} = 0.5 \ \text{feet} \][/tex]
- The midline [tex]\( C \)[/tex] (average height) is:
[tex]\[ C = \frac{h_{\text{max}} + h_{\text{min}}}{2} = \frac{10 + 9}{2} = 9.5 \ \text{feet} \][/tex]
3. Period of the Function:
- The period of the height function in hours is 24 hours, as the hour hand returns to the same position every 24 hours.
- For cosine functions, the period [tex]\( T \)[/tex] is related to the coefficient [tex]\( B \)[/tex] inside the cosine argument by the equation:
[tex]\[ T = \frac{2\pi}{B} \][/tex]
- Given [tex]\( T = 24 \)[/tex] hours, we solve for [tex]\( B \)[/tex]:
[tex]\[ 24 = \frac{2\pi}{B} \implies B = \frac{2\pi}{24} = \frac{\pi}{12} \][/tex]
4. Final Equation:
- Combine the amplitude, midline, and the coefficient [tex]\( B \)[/tex] into the cosine function:
[tex]\[ h = A \cos(Bt) + C \Rightarrow h = 0.5 \cos \left( \frac{\pi}{12} t \right) + 9.5 \][/tex]
The correct equation that models the height [tex]\( h \)[/tex] of the tip of the hour hand as a function of time [tex]\( t \)[/tex] is:
[tex]\[ h = 0.5 \cos \left( \frac{\pi}{12} t \right) + 9.5 \][/tex]
Therefore, the correct answer to the problem is:
[tex]\[ h = 0.5 \cos \left( \frac{\pi}{12} t \right) + 9.5 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.