Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, we need to find the area of the segment of a circle cut off by one side of an inscribed equilateral triangle.
1. Determine the central angle:
Since the triangle is equilateral, it divides the circle into three equal sectors. Each sector has a central angle of [tex]$60^\circ$[/tex] or [tex]\(\frac{\pi}{3}\)[/tex] radians.
2. Calculate the area of the sector:
The area [tex]\(A_{\text{sector}}\)[/tex] of a sector with a central angle [tex]\(\theta\)[/tex] in a circle of radius [tex]\(r\)[/tex] is given by:
[tex]\[ A_{\text{sector}} = \frac{1}{2} r^2 \theta \][/tex]
Plugging in the given values ([tex]\(\theta = \frac{\pi}{3}\)[/tex] and [tex]\(r = 6\)[/tex]):
[tex]\[ A_{\text{sector}} = \frac{1}{2} \times 6^2 \times \frac{\pi}{3} = 18.84955592153876 \text{ square inches} \][/tex]
3. Calculate the area of the equilateral triangle:
The area [tex]\(A_{\text{triangle}}\)[/tex] of an equilateral triangle with side length [tex]\(s\)[/tex] can be found using:
[tex]\[ A_{\text{triangle}} = \frac{\sqrt{3}}{4} s^2 \][/tex]
The side length [tex]\(s\)[/tex] of the triangle can be found using the formula [tex]\(s = r\sqrt{3}\)[/tex]. Thus:
[tex]\[ s = 6 \sqrt{3} \][/tex]
Therefore, the area becomes:
[tex]\[ A_{\text{triangle}} = \frac{\sqrt{3}}{4} (6 \sqrt{3})^2 = 46.76537180435968 \text{ square inches} \][/tex]
4. Calculate the area of the segment:
The segment area is the area of the sector minus the area of the triangle:
[tex]\[ A_{\text{segment}} = A_{\text{sector}} - A_{\text{triangle}} = 18.84955592153876 - 46.76537180435968 = -27.915815882820922 \][/tex]
Thus, the area of the segment cut off by one side of the equilateral triangle, expressed in exact form, is:
[tex]\[ A = (\pi - \sqrt{27.915815882820922}) \; \text{inches}^2 \][/tex]
1. Determine the central angle:
Since the triangle is equilateral, it divides the circle into three equal sectors. Each sector has a central angle of [tex]$60^\circ$[/tex] or [tex]\(\frac{\pi}{3}\)[/tex] radians.
2. Calculate the area of the sector:
The area [tex]\(A_{\text{sector}}\)[/tex] of a sector with a central angle [tex]\(\theta\)[/tex] in a circle of radius [tex]\(r\)[/tex] is given by:
[tex]\[ A_{\text{sector}} = \frac{1}{2} r^2 \theta \][/tex]
Plugging in the given values ([tex]\(\theta = \frac{\pi}{3}\)[/tex] and [tex]\(r = 6\)[/tex]):
[tex]\[ A_{\text{sector}} = \frac{1}{2} \times 6^2 \times \frac{\pi}{3} = 18.84955592153876 \text{ square inches} \][/tex]
3. Calculate the area of the equilateral triangle:
The area [tex]\(A_{\text{triangle}}\)[/tex] of an equilateral triangle with side length [tex]\(s\)[/tex] can be found using:
[tex]\[ A_{\text{triangle}} = \frac{\sqrt{3}}{4} s^2 \][/tex]
The side length [tex]\(s\)[/tex] of the triangle can be found using the formula [tex]\(s = r\sqrt{3}\)[/tex]. Thus:
[tex]\[ s = 6 \sqrt{3} \][/tex]
Therefore, the area becomes:
[tex]\[ A_{\text{triangle}} = \frac{\sqrt{3}}{4} (6 \sqrt{3})^2 = 46.76537180435968 \text{ square inches} \][/tex]
4. Calculate the area of the segment:
The segment area is the area of the sector minus the area of the triangle:
[tex]\[ A_{\text{segment}} = A_{\text{sector}} - A_{\text{triangle}} = 18.84955592153876 - 46.76537180435968 = -27.915815882820922 \][/tex]
Thus, the area of the segment cut off by one side of the equilateral triangle, expressed in exact form, is:
[tex]\[ A = (\pi - \sqrt{27.915815882820922}) \; \text{inches}^2 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.