Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve this problem, we need to find the area of the segment of a circle cut off by one side of an inscribed equilateral triangle.
1. Determine the central angle:
Since the triangle is equilateral, it divides the circle into three equal sectors. Each sector has a central angle of [tex]$60^\circ$[/tex] or [tex]\(\frac{\pi}{3}\)[/tex] radians.
2. Calculate the area of the sector:
The area [tex]\(A_{\text{sector}}\)[/tex] of a sector with a central angle [tex]\(\theta\)[/tex] in a circle of radius [tex]\(r\)[/tex] is given by:
[tex]\[ A_{\text{sector}} = \frac{1}{2} r^2 \theta \][/tex]
Plugging in the given values ([tex]\(\theta = \frac{\pi}{3}\)[/tex] and [tex]\(r = 6\)[/tex]):
[tex]\[ A_{\text{sector}} = \frac{1}{2} \times 6^2 \times \frac{\pi}{3} = 18.84955592153876 \text{ square inches} \][/tex]
3. Calculate the area of the equilateral triangle:
The area [tex]\(A_{\text{triangle}}\)[/tex] of an equilateral triangle with side length [tex]\(s\)[/tex] can be found using:
[tex]\[ A_{\text{triangle}} = \frac{\sqrt{3}}{4} s^2 \][/tex]
The side length [tex]\(s\)[/tex] of the triangle can be found using the formula [tex]\(s = r\sqrt{3}\)[/tex]. Thus:
[tex]\[ s = 6 \sqrt{3} \][/tex]
Therefore, the area becomes:
[tex]\[ A_{\text{triangle}} = \frac{\sqrt{3}}{4} (6 \sqrt{3})^2 = 46.76537180435968 \text{ square inches} \][/tex]
4. Calculate the area of the segment:
The segment area is the area of the sector minus the area of the triangle:
[tex]\[ A_{\text{segment}} = A_{\text{sector}} - A_{\text{triangle}} = 18.84955592153876 - 46.76537180435968 = -27.915815882820922 \][/tex]
Thus, the area of the segment cut off by one side of the equilateral triangle, expressed in exact form, is:
[tex]\[ A = (\pi - \sqrt{27.915815882820922}) \; \text{inches}^2 \][/tex]
1. Determine the central angle:
Since the triangle is equilateral, it divides the circle into three equal sectors. Each sector has a central angle of [tex]$60^\circ$[/tex] or [tex]\(\frac{\pi}{3}\)[/tex] radians.
2. Calculate the area of the sector:
The area [tex]\(A_{\text{sector}}\)[/tex] of a sector with a central angle [tex]\(\theta\)[/tex] in a circle of radius [tex]\(r\)[/tex] is given by:
[tex]\[ A_{\text{sector}} = \frac{1}{2} r^2 \theta \][/tex]
Plugging in the given values ([tex]\(\theta = \frac{\pi}{3}\)[/tex] and [tex]\(r = 6\)[/tex]):
[tex]\[ A_{\text{sector}} = \frac{1}{2} \times 6^2 \times \frac{\pi}{3} = 18.84955592153876 \text{ square inches} \][/tex]
3. Calculate the area of the equilateral triangle:
The area [tex]\(A_{\text{triangle}}\)[/tex] of an equilateral triangle with side length [tex]\(s\)[/tex] can be found using:
[tex]\[ A_{\text{triangle}} = \frac{\sqrt{3}}{4} s^2 \][/tex]
The side length [tex]\(s\)[/tex] of the triangle can be found using the formula [tex]\(s = r\sqrt{3}\)[/tex]. Thus:
[tex]\[ s = 6 \sqrt{3} \][/tex]
Therefore, the area becomes:
[tex]\[ A_{\text{triangle}} = \frac{\sqrt{3}}{4} (6 \sqrt{3})^2 = 46.76537180435968 \text{ square inches} \][/tex]
4. Calculate the area of the segment:
The segment area is the area of the sector minus the area of the triangle:
[tex]\[ A_{\text{segment}} = A_{\text{sector}} - A_{\text{triangle}} = 18.84955592153876 - 46.76537180435968 = -27.915815882820922 \][/tex]
Thus, the area of the segment cut off by one side of the equilateral triangle, expressed in exact form, is:
[tex]\[ A = (\pi - \sqrt{27.915815882820922}) \; \text{inches}^2 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.