Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the length of the third side of a triangle when given two sides and the included angle, we use the Law of Cosines. The Law of Cosines formula is:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
Here, we are given:
- side [tex]\( a = 2 \)[/tex]
- side [tex]\( b = 5 \)[/tex]
- the angle between these sides [tex]\( C = 60^{\circ} \)[/tex]
Step 1: Convert the angle from degrees to radians. We know that [tex]\(60^{\circ}\)[/tex] is equivalent to [tex]\(\frac{\pi}{3}\)[/tex] radians.
Step 2: Apply the Law of Cosines formula. Substitute the values into the formula:
[tex]\[ c^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \cos(60^{\circ}) \][/tex]
Step 3: Calculate the cosine of [tex]\( 60^\circ \)[/tex]. We know [tex]\(\cos(60^\circ) = \frac{1}{2} \)[/tex].
Step 4: Substitute [tex]\(\cos(60^\circ)\)[/tex] back into the equation:
[tex]\[ c^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \][/tex]
Step 5: Simplify the equation step by step:
[tex]\[ c^2 = 4 + 25 - 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 25 - 10 \][/tex]
[tex]\[ c^2 = 4 + 25 - 10 = 19 \][/tex]
So,
[tex]\[ c^2 = 19 \][/tex]
Step 6: Take the square root of both sides to find [tex]\( c \)[/tex]:
[tex]\[ c = \sqrt{19} \][/tex]
Thus, the length of the third side is [tex]\(\sqrt{19}\)[/tex].
The correct answer is:
B. [tex]\(\sqrt{19}\)[/tex]
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
Here, we are given:
- side [tex]\( a = 2 \)[/tex]
- side [tex]\( b = 5 \)[/tex]
- the angle between these sides [tex]\( C = 60^{\circ} \)[/tex]
Step 1: Convert the angle from degrees to radians. We know that [tex]\(60^{\circ}\)[/tex] is equivalent to [tex]\(\frac{\pi}{3}\)[/tex] radians.
Step 2: Apply the Law of Cosines formula. Substitute the values into the formula:
[tex]\[ c^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \cos(60^{\circ}) \][/tex]
Step 3: Calculate the cosine of [tex]\( 60^\circ \)[/tex]. We know [tex]\(\cos(60^\circ) = \frac{1}{2} \)[/tex].
Step 4: Substitute [tex]\(\cos(60^\circ)\)[/tex] back into the equation:
[tex]\[ c^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \][/tex]
Step 5: Simplify the equation step by step:
[tex]\[ c^2 = 4 + 25 - 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 25 - 10 \][/tex]
[tex]\[ c^2 = 4 + 25 - 10 = 19 \][/tex]
So,
[tex]\[ c^2 = 19 \][/tex]
Step 6: Take the square root of both sides to find [tex]\( c \)[/tex]:
[tex]\[ c = \sqrt{19} \][/tex]
Thus, the length of the third side is [tex]\(\sqrt{19}\)[/tex].
The correct answer is:
B. [tex]\(\sqrt{19}\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.