Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the value of [tex]\(\cos 30^\circ\)[/tex], let's go through the steps thoroughly.
1. Recall that in trigonometry, the cosine of an angle in a right triangle is defined as the ratio of the adjacent side over the hypotenuse.
2. For a [tex]\(30^\circ\)[/tex] angle in an equilateral triangle cut in half, we can use the special triangles properties:
- An equilateral triangle has all sides equal and all angles equal to [tex]\(60^\circ\)[/tex].
- Cutting the triangle in half gives us a right triangle with angles [tex]\(30^\circ\)[/tex], [tex]\(60^\circ\)[/tex], and [tex]\(90^\circ\)[/tex].
- The sides of this right triangle (half of the equilateral triangle) have ratios of 1 (opposite the [tex]\(30^\circ\)[/tex]), [tex]\(\sqrt{3}\)[/tex] (opposite the [tex]\(60^\circ\)[/tex]), and 2 (the hypotenuse).
3. For the [tex]\(30^\circ\)[/tex] triangle:
- The ratio of the adjacent side (which is [tex]\(\sqrt{3}\)[/tex]) to the hypotenuse [tex]\(2\)[/tex] in a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle is thus:
[tex]\[ \cos 30^\circ = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{\sqrt{3}}{2} \][/tex]
Given this information, let's check the provided options:
- A. [tex]\(\frac{1}{\sqrt{3}}\)[/tex]
- B. 1
- C. [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
- D. [tex]\(\sqrt{3}\)[/tex]
- E. [tex]\(\frac{1}{2}\)[/tex]
- F. [tex]\(\frac{1}{\sqrt{2}}\)[/tex]
From our reconfirmed calculation, the correct value of [tex]\(\cos 30^\circ\)[/tex] matches option C.
Therefore, the correct answer is C. [tex]\(\frac{\sqrt{3}}{2}\)[/tex].
1. Recall that in trigonometry, the cosine of an angle in a right triangle is defined as the ratio of the adjacent side over the hypotenuse.
2. For a [tex]\(30^\circ\)[/tex] angle in an equilateral triangle cut in half, we can use the special triangles properties:
- An equilateral triangle has all sides equal and all angles equal to [tex]\(60^\circ\)[/tex].
- Cutting the triangle in half gives us a right triangle with angles [tex]\(30^\circ\)[/tex], [tex]\(60^\circ\)[/tex], and [tex]\(90^\circ\)[/tex].
- The sides of this right triangle (half of the equilateral triangle) have ratios of 1 (opposite the [tex]\(30^\circ\)[/tex]), [tex]\(\sqrt{3}\)[/tex] (opposite the [tex]\(60^\circ\)[/tex]), and 2 (the hypotenuse).
3. For the [tex]\(30^\circ\)[/tex] triangle:
- The ratio of the adjacent side (which is [tex]\(\sqrt{3}\)[/tex]) to the hypotenuse [tex]\(2\)[/tex] in a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle is thus:
[tex]\[ \cos 30^\circ = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{\sqrt{3}}{2} \][/tex]
Given this information, let's check the provided options:
- A. [tex]\(\frac{1}{\sqrt{3}}\)[/tex]
- B. 1
- C. [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
- D. [tex]\(\sqrt{3}\)[/tex]
- E. [tex]\(\frac{1}{2}\)[/tex]
- F. [tex]\(\frac{1}{\sqrt{2}}\)[/tex]
From our reconfirmed calculation, the correct value of [tex]\(\cos 30^\circ\)[/tex] matches option C.
Therefore, the correct answer is C. [tex]\(\frac{\sqrt{3}}{2}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.