Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which graph represents the system of equations, we need to analyze each equation and find their respective lines by transforming them into slope-intercept form ([tex]\( y = mx + b \)[/tex]). Here are the steps:
1. Equation 1: [tex]\(-2x + y = 10\)[/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = 2x + 10 \][/tex]
This equation represents a line with a slope ([tex]\( m \)[/tex]) of 2 and a y-intercept ([tex]\( b \)[/tex]) of 10.
2. Equation 2: [tex]\( x + 2y = 5 \)[/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ 2y = -x + 5 \][/tex]
[tex]\[ y = -\frac{1}{2}x + \frac{5}{2} \][/tex]
This equation represents a line with a slope ([tex]\( m \)[/tex]) of [tex]\(-\frac{1}{2}\)[/tex] and a y-intercept ([tex]\( b \)[/tex]) of [tex]\(\frac{5}{2}\)[/tex].
Next, we find the point of intersection of the two lines, which represents the solution to the system of equations. The solution for the system is the point where both equations are satisfied simultaneously. For our system, the solution is:
[tex]\[ (x, y) = (-3, 4) \][/tex]
To visually verify this, we find that the lines' intersection at [tex]\((-3, 4)\)[/tex] must appear on the graph. We can now summarize:
- The line [tex]\( y = 2x + 10 \)[/tex] should pass through the points [tex]\((0, 10)\)[/tex] and [tex]\((2, 14)\)[/tex], illustrating a steep upward slope.
- The line [tex]\( y = -\frac{1}{2}x + \frac{5}{2} \)[/tex] should pass through the points [tex]\((0, \frac{5}{2})\)[/tex] and [tex]\((2, \frac{1}{2})\)[/tex], illustrating a downward slope.
- These lines should intersect at [tex]\((-3, 4)\)[/tex].
When identifying the correct graph, confirm the following:
- Both lines have the correct slopes and y-intercepts.
- They intersect precisely at the point [tex]\((-3, 4)\)[/tex].
Thus, the graph which correctly represents these characteristics is the one where:
- The first line has a positive slope and intersects the y-axis at 10.
- The second line has a negative slope ([tex]\(-\frac{1}{2}\)[/tex]) and intersects the y-axis at [tex]\(\frac{5}{2}\)[/tex].
- The lines intersect at the point [tex]\((-3, 4)\)[/tex].
1. Equation 1: [tex]\(-2x + y = 10\)[/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = 2x + 10 \][/tex]
This equation represents a line with a slope ([tex]\( m \)[/tex]) of 2 and a y-intercept ([tex]\( b \)[/tex]) of 10.
2. Equation 2: [tex]\( x + 2y = 5 \)[/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ 2y = -x + 5 \][/tex]
[tex]\[ y = -\frac{1}{2}x + \frac{5}{2} \][/tex]
This equation represents a line with a slope ([tex]\( m \)[/tex]) of [tex]\(-\frac{1}{2}\)[/tex] and a y-intercept ([tex]\( b \)[/tex]) of [tex]\(\frac{5}{2}\)[/tex].
Next, we find the point of intersection of the two lines, which represents the solution to the system of equations. The solution for the system is the point where both equations are satisfied simultaneously. For our system, the solution is:
[tex]\[ (x, y) = (-3, 4) \][/tex]
To visually verify this, we find that the lines' intersection at [tex]\((-3, 4)\)[/tex] must appear on the graph. We can now summarize:
- The line [tex]\( y = 2x + 10 \)[/tex] should pass through the points [tex]\((0, 10)\)[/tex] and [tex]\((2, 14)\)[/tex], illustrating a steep upward slope.
- The line [tex]\( y = -\frac{1}{2}x + \frac{5}{2} \)[/tex] should pass through the points [tex]\((0, \frac{5}{2})\)[/tex] and [tex]\((2, \frac{1}{2})\)[/tex], illustrating a downward slope.
- These lines should intersect at [tex]\((-3, 4)\)[/tex].
When identifying the correct graph, confirm the following:
- Both lines have the correct slopes and y-intercepts.
- They intersect precisely at the point [tex]\((-3, 4)\)[/tex].
Thus, the graph which correctly represents these characteristics is the one where:
- The first line has a positive slope and intersects the y-axis at 10.
- The second line has a negative slope ([tex]\(-\frac{1}{2}\)[/tex]) and intersects the y-axis at [tex]\(\frac{5}{2}\)[/tex].
- The lines intersect at the point [tex]\((-3, 4)\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.