Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

If [tex]\alpha, \beta, \gamma[/tex] are zeroes of [tex]f(x) = x^3 - 5x^2 + 7x - 15[/tex], find the value of [tex](\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}[/tex].

Sagot :

Certainly! Let's solve the problem step-by-step.

We are given a polynomial [tex]\( f(x) = x^3 - 5x^2 + 7x - 15 \)[/tex] and asked to find the value of [tex]\((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}\)[/tex], where [tex]\(\alpha, \beta, \gamma\)[/tex] are the roots of the polynomial.

First, let's recall Vieta's formulas, which relate the coefficients of the polynomial to sums and products of its roots. For a cubic polynomial of the form [tex]\( f(x) = x^3 + ax^2 + bx + c \)[/tex], the relationships are:

1. [tex]\(\alpha + \beta + \gamma = -\frac{\text{coefficient of } x^2}{\text{leading coefficient}}\)[/tex]
2. [tex]\(\alpha\beta + \beta\gamma + \gamma\alpha = \frac{\text{coefficient of } x}{\text{leading coefficient}}\)[/tex]
3. [tex]\(\alpha\beta\gamma = -\frac{\text{constant term}}{\text{leading coefficient}}\)[/tex]

For our polynomial [tex]\( f(x) = x^3 - 5x^2 + 7x - 15 \)[/tex], the leading coefficient (coefficient of [tex]\( x^3 \)[/tex]) is 1.

According to Vieta's formulas:
1. [tex]\(\alpha + \beta + \gamma = -\left(-5\right) = 5\)[/tex]
2. [tex]\(\alpha\beta + \beta\gamma + \gamma\alpha = 7\)[/tex]
3. [tex]\(\alpha\beta\gamma = -(-15) = 15\)[/tex]

We need to find the value of [tex]\((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}\)[/tex].

Notice that:
[tex]\[ (\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1} = \frac{1}{\alpha \beta} + \frac{1}{\beta \gamma} + \frac{1}{\gamma \alpha} \][/tex]

To simplify these fractions, we find a common denominator, which is:
[tex]\[ \alpha \beta \cdot \beta \gamma \cdot \gamma \alpha = (\alpha \beta \gamma)^2 \][/tex]

Now, we rewrite the expression:
[tex]\[ \frac{1}{\alpha \beta} + \frac{1}{\beta \gamma} + \frac{1}{\gamma \alpha} = \frac{\gamma \alpha \beta + \alpha \beta \gamma + \beta \gamma \alpha}{(\alpha \beta \gamma)^2} \][/tex]

Since addition in the numerator is simply the sum of all product pairs of roots, because of symmetry:
[tex]\[ = \frac{3\alpha \beta \gamma}{(\alpha \beta \gamma)^2} = \frac{3 \alpha \beta \gamma}{(\alpha \beta \gamma)^2} \][/tex]

We know from Vieta's formulas that:
[tex]\[ \alpha \beta \gamma = 15 \][/tex]

Substitute this into the expression:
[tex]\[ = \frac{3 \times 15}{(15)^2} = \frac{45}{225} = \frac{1}{5} \][/tex]

Therefore, the value of [tex]\((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}\)[/tex] is:
[tex]\[ \boxed{\frac{1}{5}} \][/tex]