At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's solve this step-by-step.
### Step 1: Calculate the Force
First, we need to calculate the force exerted by the crate. The force is given by the formula:
[tex]\[ \text{Force} = \text{mass} \times g \][/tex]
where
- mass is the mass of the crate, which is 500 kg.
- [tex]\( g \)[/tex] is the acceleration due to gravity, which is [tex]\( 10 \, \text{m/s}^2 \)[/tex].
So,
[tex]\[ \text{Force} = 500 \, \text{kg} \times 10 \, \text{m/s}^2 = 5000 \, \text{N} \][/tex]
### Step 2: Calculate the Work Done
Next, we calculate the work done by the machine to lift the crate. The work done is given by the formula:
[tex]\[ \text{Work} = \text{Force} \times \text{distance} \][/tex]
where
- the distance is the height through which the crate is lifted, which is 20 meters.
So,
[tex]\[ \text{Work} = 5000 \, \text{N} \times 20 \, \text{m} = 100000 \, \text{J} \][/tex]
### Step 3: Calculate the Power Output
We then calculate the power output of the machine. Power is given by:
[tex]\[ \text{Power} = \frac{\text{Work}}{\text{time}} \][/tex]
where
- the time taken is 60 seconds.
So,
[tex]\[ \text{Power} = \frac{100000 \, \text{J}}{60 \, \text{s}} = 1666.67 \, \text{W} \][/tex]
### Step 4: Convert Power Output to Kilowatts
Finally, we convert the power output from watts to kilowatts. Since 1 kilowatt (kW) is equal to 1000 watts (W), we get:
[tex]\[ \text{Power in kilowatts} = \frac{1666.67 \, \text{W}}{1000} = 1.67 \, \text{kW} \][/tex]
Therefore, the power output of the machine is [tex]\( 1.67 \, \text{kW} \)[/tex].
### Step 1: Calculate the Force
First, we need to calculate the force exerted by the crate. The force is given by the formula:
[tex]\[ \text{Force} = \text{mass} \times g \][/tex]
where
- mass is the mass of the crate, which is 500 kg.
- [tex]\( g \)[/tex] is the acceleration due to gravity, which is [tex]\( 10 \, \text{m/s}^2 \)[/tex].
So,
[tex]\[ \text{Force} = 500 \, \text{kg} \times 10 \, \text{m/s}^2 = 5000 \, \text{N} \][/tex]
### Step 2: Calculate the Work Done
Next, we calculate the work done by the machine to lift the crate. The work done is given by the formula:
[tex]\[ \text{Work} = \text{Force} \times \text{distance} \][/tex]
where
- the distance is the height through which the crate is lifted, which is 20 meters.
So,
[tex]\[ \text{Work} = 5000 \, \text{N} \times 20 \, \text{m} = 100000 \, \text{J} \][/tex]
### Step 3: Calculate the Power Output
We then calculate the power output of the machine. Power is given by:
[tex]\[ \text{Power} = \frac{\text{Work}}{\text{time}} \][/tex]
where
- the time taken is 60 seconds.
So,
[tex]\[ \text{Power} = \frac{100000 \, \text{J}}{60 \, \text{s}} = 1666.67 \, \text{W} \][/tex]
### Step 4: Convert Power Output to Kilowatts
Finally, we convert the power output from watts to kilowatts. Since 1 kilowatt (kW) is equal to 1000 watts (W), we get:
[tex]\[ \text{Power in kilowatts} = \frac{1666.67 \, \text{W}}{1000} = 1.67 \, \text{kW} \][/tex]
Therefore, the power output of the machine is [tex]\( 1.67 \, \text{kW} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.