Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Evaluate the formula [tex]$V=\frac{B h}{3}$[/tex] for [tex]$B=4 \, \text{cm}^2$[/tex] and [tex][tex]$h=6 \, \text{cm}$[/tex][/tex].

Sagot :

Certainly! Let's go through the given formula step by step:

We are asked to evaluate the formula:
[tex]\[ V = \frac{B h}{3} \][/tex]
with the given values:
[tex]\[ B = 4 \, \text{cm}^2 \][/tex]
[tex]\[ h = 6 \, \text{cm} \][/tex]

Step 1: Multiply the base area (B) by the height (h)

[tex]\[ B \times h = 4 \, \text{cm}^2 \times 6 \, \text{cm} \][/tex]

First, calculate the product:
[tex]\[ 4 \times 6 = 24 \][/tex]

Therefore,
[tex]\[ B \times h = 24 \, \text{cm}^3 \][/tex]

Step 2: Divide the result by 3 to find the volume (V)

[tex]\[ V = \frac{24 \, \text{cm}^3}{3} \][/tex]

Now, perform the division:
[tex]\[ \frac{24}{3} = 8 \][/tex]

Thus, the volume is:
[tex]\[ V = 8 \, \text{cm}^3 \][/tex]

So, the volume [tex]\( V \)[/tex] evaluated with the given values [tex]\( B = 4 \, \text{cm}^2 \)[/tex] and [tex]\( h = 6 \, \text{cm} \)[/tex] is:
[tex]\[ V = 8 \, \text{cm}^3 \][/tex]