At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the system of equations using substitution, follow these steps:
1. Write down the equations:
[tex]\[ \begin{array}{l} 2c - d = -2 \quad \text{(Equation 1)} \\ 4c + d = 20 \quad \text{(Equation 2)} \end{array} \][/tex]
2. Solve Equation 1 for [tex]\( d \)[/tex]:
[tex]\[ 2c - d = -2 \implies d = 2c + 2 \][/tex]
3. Substitute [tex]\( d = 2c + 2 \)[/tex] into Equation 2:
[tex]\[ 4c + (2c + 2) = 20 \][/tex]
4. Combine like terms:
[tex]\[ 4c + 2c + 2 = 20 \implies 6c + 2 = 20 \][/tex]
5. Solve for [tex]\( c \)[/tex]:
[tex]\[ 6c + 2 = 20 \implies 6c = 18 \implies c = 3 \][/tex]
6. Substitute [tex]\( c = 3 \)[/tex] back into the expression for [tex]\( d \)[/tex]:
[tex]\[ d = 2c + 2 \implies d = 2(3) + 2 \implies d = 6 + 2 \implies d = 8 \][/tex]
7. Write the solution as an ordered pair:
[tex]\[ (c, d) = (3, 8) \][/tex]
8. Verify the solution:
Substitute [tex]\( c = 3 \)[/tex] and [tex]\( d = 8 \)[/tex] back into the original equations to ensure both are satisfied:
- For Equation 1: [tex]\( 2(3) - 8 = 6 - 8 = -2 \)[/tex] (True)
- For Equation 2: [tex]\( 4(3) + 8 = 12 + 8 = 20 \)[/tex] (True)
Since both equations are satisfied, the solution to the system of equations is [tex]\( (3, 8) \)[/tex].
Therefore, the correct answer is:
[tex]\[ (3, 8) \][/tex]
1. Write down the equations:
[tex]\[ \begin{array}{l} 2c - d = -2 \quad \text{(Equation 1)} \\ 4c + d = 20 \quad \text{(Equation 2)} \end{array} \][/tex]
2. Solve Equation 1 for [tex]\( d \)[/tex]:
[tex]\[ 2c - d = -2 \implies d = 2c + 2 \][/tex]
3. Substitute [tex]\( d = 2c + 2 \)[/tex] into Equation 2:
[tex]\[ 4c + (2c + 2) = 20 \][/tex]
4. Combine like terms:
[tex]\[ 4c + 2c + 2 = 20 \implies 6c + 2 = 20 \][/tex]
5. Solve for [tex]\( c \)[/tex]:
[tex]\[ 6c + 2 = 20 \implies 6c = 18 \implies c = 3 \][/tex]
6. Substitute [tex]\( c = 3 \)[/tex] back into the expression for [tex]\( d \)[/tex]:
[tex]\[ d = 2c + 2 \implies d = 2(3) + 2 \implies d = 6 + 2 \implies d = 8 \][/tex]
7. Write the solution as an ordered pair:
[tex]\[ (c, d) = (3, 8) \][/tex]
8. Verify the solution:
Substitute [tex]\( c = 3 \)[/tex] and [tex]\( d = 8 \)[/tex] back into the original equations to ensure both are satisfied:
- For Equation 1: [tex]\( 2(3) - 8 = 6 - 8 = -2 \)[/tex] (True)
- For Equation 2: [tex]\( 4(3) + 8 = 12 + 8 = 20 \)[/tex] (True)
Since both equations are satisfied, the solution to the system of equations is [tex]\( (3, 8) \)[/tex].
Therefore, the correct answer is:
[tex]\[ (3, 8) \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.