Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

On your own paper, solve the system of equations using substitution and identify the solution.

[tex]\[
\begin{array}{l}
x - 2 = y \\
-2x + 2y = 2
\end{array}
\][/tex]

A. (6, 4)
B. (4, 2)
C. (2, 0)
D. (8, 6)
E. No Solution
F. Infinitely Many Solutions

Sagot :

To solve the system of equations using substitution, we will follow these steps:

1. Solve one of the equations for one variable:
[tex]\[ x - 2 = y \][/tex]
Solve this for [tex]\( y \)[/tex]:
[tex]\[ y = x - 2 \][/tex]

2. Substitute [tex]\( y = x - 2 \)[/tex] into the second equation:
[tex]\[ -2x + 2y = 2 \][/tex]
Replace [tex]\( y \)[/tex] in the second equation with [tex]\( x - 2 \)[/tex]:
[tex]\[ -2x + 2(x - 2) = 2 \][/tex]
Simplify the equation:
[tex]\[ -2x + 2x - 4 = 2 \][/tex]
The [tex]\( -2x \)[/tex] and [tex]\( 2x \)[/tex] cancel each other out:
[tex]\[ -4 = 2 \][/tex]
This statement is false, which means the system of equations is inconsistent.

Since the system of equations is inconsistent, there are no solutions that satisfy both equations.

Therefore, the answer to the system given is:

[tex]\[ \boxed{\text{No Solution}} \][/tex]