Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine if the equation [tex]\((3x - 2)(2x - 3) = (2x + 5)(2x - 1)\)[/tex] is a quadratic equation, let's expand both sides of the equation and then compare the degrees of the resulting polynomials.
First, we expand the left side of the equation:
[tex]\[ (3x - 2)(2x - 3) \][/tex]
Expanding this using distributive properties (FOIL method):
[tex]\[ = (3x)(2x) + (3x)(-3) + (-2)(2x) + (-2)(-3) \][/tex]
[tex]\[ = 6x^2 - 9x - 4x + 6 \][/tex]
Combining like terms, we get:
[tex]\[ = 6x^2 - 13x + 6 \][/tex]
Next, we expand the right side of the equation:
[tex]\[ (2x + 5)(2x - 1) \][/tex]
Expanding this using distributive properties (FOIL method):
[tex]\[ = (2x)(2x) + (2x)(-1) + (5)(2x) + (5)(-1) \][/tex]
[tex]\[ = 4x^2 - 2x + 10x - 5 \][/tex]
Combining like terms, we get:
[tex]\[ = 4x^2 + 8x - 5 \][/tex]
Now, let's check the degrees of the polynomials on both sides of the equation.
The left side polynomial is:
[tex]\[ 6x^2 - 13x + 6 \][/tex]
The highest power of [tex]\(x\)[/tex] in this polynomial is [tex]\(x^2\)[/tex], so its degree is 2.
The right side polynomial is:
[tex]\[ 4x^2 + 8x - 5 \][/tex]
The highest power of [tex]\(x\)[/tex] in this polynomial is [tex]\(x^2\)[/tex], so its degree is also 2.
Since both sides of the equation are polynomials of degree 2, we can conclude that the equation [tex]\((3x - 2)(2x - 3) = (2x + 5)(2x - 1)\)[/tex] represents a quadratic equation.
First, we expand the left side of the equation:
[tex]\[ (3x - 2)(2x - 3) \][/tex]
Expanding this using distributive properties (FOIL method):
[tex]\[ = (3x)(2x) + (3x)(-3) + (-2)(2x) + (-2)(-3) \][/tex]
[tex]\[ = 6x^2 - 9x - 4x + 6 \][/tex]
Combining like terms, we get:
[tex]\[ = 6x^2 - 13x + 6 \][/tex]
Next, we expand the right side of the equation:
[tex]\[ (2x + 5)(2x - 1) \][/tex]
Expanding this using distributive properties (FOIL method):
[tex]\[ = (2x)(2x) + (2x)(-1) + (5)(2x) + (5)(-1) \][/tex]
[tex]\[ = 4x^2 - 2x + 10x - 5 \][/tex]
Combining like terms, we get:
[tex]\[ = 4x^2 + 8x - 5 \][/tex]
Now, let's check the degrees of the polynomials on both sides of the equation.
The left side polynomial is:
[tex]\[ 6x^2 - 13x + 6 \][/tex]
The highest power of [tex]\(x\)[/tex] in this polynomial is [tex]\(x^2\)[/tex], so its degree is 2.
The right side polynomial is:
[tex]\[ 4x^2 + 8x - 5 \][/tex]
The highest power of [tex]\(x\)[/tex] in this polynomial is [tex]\(x^2\)[/tex], so its degree is also 2.
Since both sides of the equation are polynomials of degree 2, we can conclude that the equation [tex]\((3x - 2)(2x - 3) = (2x + 5)(2x - 1)\)[/tex] represents a quadratic equation.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.