Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! To find the acceleration due to gravity using the given length and period of a pendulum, we can use the following fundamental equation for the period of a simple pendulum:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
Where:
- [tex]\( T \)[/tex] is the period of the pendulum (in seconds),
- [tex]\( L \)[/tex] is the length of the pendulum (in centimeters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in cm/s[tex]\(^2\)[/tex]).
We are given:
[tex]\[ L = 100 \text{ cm} \][/tex]
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
To find [tex]\( g \)[/tex], we need to rearrange the formula to solve for [tex]\( g \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
First, isolate [tex]\(\sqrt{\frac{L}{g}}\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( g \)[/tex]:
[tex]\[ g = \frac{L}{\left(\frac{T}{2\pi}\right)^2} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
[tex]\[ L = 100 \text{ cm} \][/tex]
Calculate [tex]\(\left(\frac{T}{2\pi}\right)^2\)[/tex]:
[tex]\[ \left(\frac{0.65 \pi}{2 \pi}\right)^2 = \left(\frac{0.65}{2}\right)^2 = \left(0.325\right)^2 \][/tex]
[tex]\[ \left(0.325\right)^2 = 0.105625 \][/tex]
Then, use this result to find [tex]\( g \)[/tex]:
[tex]\[ g = \frac{100}{0.105625} \][/tex]
[tex]\[ g \approx 946.7455621301774 \text{ cm/s}^2 \][/tex]
Therefore, the acceleration due to gravity for the given pendulum length and period is approximately:
[tex]\[ \boxed{946.7455621301774} \text{ cm/s}^2 \][/tex]
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
Where:
- [tex]\( T \)[/tex] is the period of the pendulum (in seconds),
- [tex]\( L \)[/tex] is the length of the pendulum (in centimeters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in cm/s[tex]\(^2\)[/tex]).
We are given:
[tex]\[ L = 100 \text{ cm} \][/tex]
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
To find [tex]\( g \)[/tex], we need to rearrange the formula to solve for [tex]\( g \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
First, isolate [tex]\(\sqrt{\frac{L}{g}}\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( g \)[/tex]:
[tex]\[ g = \frac{L}{\left(\frac{T}{2\pi}\right)^2} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
[tex]\[ L = 100 \text{ cm} \][/tex]
Calculate [tex]\(\left(\frac{T}{2\pi}\right)^2\)[/tex]:
[tex]\[ \left(\frac{0.65 \pi}{2 \pi}\right)^2 = \left(\frac{0.65}{2}\right)^2 = \left(0.325\right)^2 \][/tex]
[tex]\[ \left(0.325\right)^2 = 0.105625 \][/tex]
Then, use this result to find [tex]\( g \)[/tex]:
[tex]\[ g = \frac{100}{0.105625} \][/tex]
[tex]\[ g \approx 946.7455621301774 \text{ cm/s}^2 \][/tex]
Therefore, the acceleration due to gravity for the given pendulum length and period is approximately:
[tex]\[ \boxed{946.7455621301774} \text{ cm/s}^2 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.