Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! To find the acceleration due to gravity using the given length and period of a pendulum, we can use the following fundamental equation for the period of a simple pendulum:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
Where:
- [tex]\( T \)[/tex] is the period of the pendulum (in seconds),
- [tex]\( L \)[/tex] is the length of the pendulum (in centimeters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in cm/s[tex]\(^2\)[/tex]).
We are given:
[tex]\[ L = 100 \text{ cm} \][/tex]
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
To find [tex]\( g \)[/tex], we need to rearrange the formula to solve for [tex]\( g \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
First, isolate [tex]\(\sqrt{\frac{L}{g}}\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( g \)[/tex]:
[tex]\[ g = \frac{L}{\left(\frac{T}{2\pi}\right)^2} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
[tex]\[ L = 100 \text{ cm} \][/tex]
Calculate [tex]\(\left(\frac{T}{2\pi}\right)^2\)[/tex]:
[tex]\[ \left(\frac{0.65 \pi}{2 \pi}\right)^2 = \left(\frac{0.65}{2}\right)^2 = \left(0.325\right)^2 \][/tex]
[tex]\[ \left(0.325\right)^2 = 0.105625 \][/tex]
Then, use this result to find [tex]\( g \)[/tex]:
[tex]\[ g = \frac{100}{0.105625} \][/tex]
[tex]\[ g \approx 946.7455621301774 \text{ cm/s}^2 \][/tex]
Therefore, the acceleration due to gravity for the given pendulum length and period is approximately:
[tex]\[ \boxed{946.7455621301774} \text{ cm/s}^2 \][/tex]
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
Where:
- [tex]\( T \)[/tex] is the period of the pendulum (in seconds),
- [tex]\( L \)[/tex] is the length of the pendulum (in centimeters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in cm/s[tex]\(^2\)[/tex]).
We are given:
[tex]\[ L = 100 \text{ cm} \][/tex]
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
To find [tex]\( g \)[/tex], we need to rearrange the formula to solve for [tex]\( g \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
First, isolate [tex]\(\sqrt{\frac{L}{g}}\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( g \)[/tex]:
[tex]\[ g = \frac{L}{\left(\frac{T}{2\pi}\right)^2} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
[tex]\[ L = 100 \text{ cm} \][/tex]
Calculate [tex]\(\left(\frac{T}{2\pi}\right)^2\)[/tex]:
[tex]\[ \left(\frac{0.65 \pi}{2 \pi}\right)^2 = \left(\frac{0.65}{2}\right)^2 = \left(0.325\right)^2 \][/tex]
[tex]\[ \left(0.325\right)^2 = 0.105625 \][/tex]
Then, use this result to find [tex]\( g \)[/tex]:
[tex]\[ g = \frac{100}{0.105625} \][/tex]
[tex]\[ g \approx 946.7455621301774 \text{ cm/s}^2 \][/tex]
Therefore, the acceleration due to gravity for the given pendulum length and period is approximately:
[tex]\[ \boxed{946.7455621301774} \text{ cm/s}^2 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.