Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! To find the acceleration due to gravity using the given length and period of a pendulum, we can use the following fundamental equation for the period of a simple pendulum:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
Where:
- [tex]\( T \)[/tex] is the period of the pendulum (in seconds),
- [tex]\( L \)[/tex] is the length of the pendulum (in centimeters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in cm/s[tex]\(^2\)[/tex]).
We are given:
[tex]\[ L = 100 \text{ cm} \][/tex]
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
To find [tex]\( g \)[/tex], we need to rearrange the formula to solve for [tex]\( g \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
First, isolate [tex]\(\sqrt{\frac{L}{g}}\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( g \)[/tex]:
[tex]\[ g = \frac{L}{\left(\frac{T}{2\pi}\right)^2} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
[tex]\[ L = 100 \text{ cm} \][/tex]
Calculate [tex]\(\left(\frac{T}{2\pi}\right)^2\)[/tex]:
[tex]\[ \left(\frac{0.65 \pi}{2 \pi}\right)^2 = \left(\frac{0.65}{2}\right)^2 = \left(0.325\right)^2 \][/tex]
[tex]\[ \left(0.325\right)^2 = 0.105625 \][/tex]
Then, use this result to find [tex]\( g \)[/tex]:
[tex]\[ g = \frac{100}{0.105625} \][/tex]
[tex]\[ g \approx 946.7455621301774 \text{ cm/s}^2 \][/tex]
Therefore, the acceleration due to gravity for the given pendulum length and period is approximately:
[tex]\[ \boxed{946.7455621301774} \text{ cm/s}^2 \][/tex]
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
Where:
- [tex]\( T \)[/tex] is the period of the pendulum (in seconds),
- [tex]\( L \)[/tex] is the length of the pendulum (in centimeters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in cm/s[tex]\(^2\)[/tex]).
We are given:
[tex]\[ L = 100 \text{ cm} \][/tex]
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
To find [tex]\( g \)[/tex], we need to rearrange the formula to solve for [tex]\( g \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
First, isolate [tex]\(\sqrt{\frac{L}{g}}\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( g \)[/tex]:
[tex]\[ g = \frac{L}{\left(\frac{T}{2\pi}\right)^2} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
[tex]\[ L = 100 \text{ cm} \][/tex]
Calculate [tex]\(\left(\frac{T}{2\pi}\right)^2\)[/tex]:
[tex]\[ \left(\frac{0.65 \pi}{2 \pi}\right)^2 = \left(\frac{0.65}{2}\right)^2 = \left(0.325\right)^2 \][/tex]
[tex]\[ \left(0.325\right)^2 = 0.105625 \][/tex]
Then, use this result to find [tex]\( g \)[/tex]:
[tex]\[ g = \frac{100}{0.105625} \][/tex]
[tex]\[ g \approx 946.7455621301774 \text{ cm/s}^2 \][/tex]
Therefore, the acceleration due to gravity for the given pendulum length and period is approximately:
[tex]\[ \boxed{946.7455621301774} \text{ cm/s}^2 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.