Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! To find the acceleration due to gravity using the given length and period of a pendulum, we can use the following fundamental equation for the period of a simple pendulum:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
Where:
- [tex]\( T \)[/tex] is the period of the pendulum (in seconds),
- [tex]\( L \)[/tex] is the length of the pendulum (in centimeters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in cm/s[tex]\(^2\)[/tex]).
We are given:
[tex]\[ L = 100 \text{ cm} \][/tex]
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
To find [tex]\( g \)[/tex], we need to rearrange the formula to solve for [tex]\( g \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
First, isolate [tex]\(\sqrt{\frac{L}{g}}\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( g \)[/tex]:
[tex]\[ g = \frac{L}{\left(\frac{T}{2\pi}\right)^2} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
[tex]\[ L = 100 \text{ cm} \][/tex]
Calculate [tex]\(\left(\frac{T}{2\pi}\right)^2\)[/tex]:
[tex]\[ \left(\frac{0.65 \pi}{2 \pi}\right)^2 = \left(\frac{0.65}{2}\right)^2 = \left(0.325\right)^2 \][/tex]
[tex]\[ \left(0.325\right)^2 = 0.105625 \][/tex]
Then, use this result to find [tex]\( g \)[/tex]:
[tex]\[ g = \frac{100}{0.105625} \][/tex]
[tex]\[ g \approx 946.7455621301774 \text{ cm/s}^2 \][/tex]
Therefore, the acceleration due to gravity for the given pendulum length and period is approximately:
[tex]\[ \boxed{946.7455621301774} \text{ cm/s}^2 \][/tex]
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
Where:
- [tex]\( T \)[/tex] is the period of the pendulum (in seconds),
- [tex]\( L \)[/tex] is the length of the pendulum (in centimeters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (in cm/s[tex]\(^2\)[/tex]).
We are given:
[tex]\[ L = 100 \text{ cm} \][/tex]
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
To find [tex]\( g \)[/tex], we need to rearrange the formula to solve for [tex]\( g \)[/tex]:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
First, isolate [tex]\(\sqrt{\frac{L}{g}}\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to eliminate the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( g \)[/tex]:
[tex]\[ g = \frac{L}{\left(\frac{T}{2\pi}\right)^2} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ T = 0.65 \pi \text{ seconds} \][/tex]
[tex]\[ L = 100 \text{ cm} \][/tex]
Calculate [tex]\(\left(\frac{T}{2\pi}\right)^2\)[/tex]:
[tex]\[ \left(\frac{0.65 \pi}{2 \pi}\right)^2 = \left(\frac{0.65}{2}\right)^2 = \left(0.325\right)^2 \][/tex]
[tex]\[ \left(0.325\right)^2 = 0.105625 \][/tex]
Then, use this result to find [tex]\( g \)[/tex]:
[tex]\[ g = \frac{100}{0.105625} \][/tex]
[tex]\[ g \approx 946.7455621301774 \text{ cm/s}^2 \][/tex]
Therefore, the acceleration due to gravity for the given pendulum length and period is approximately:
[tex]\[ \boxed{946.7455621301774} \text{ cm/s}^2 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.