Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem, let's analyze the given conditions step-by-step.
1. Area of a Parallelogram:
The area of a parallelogram is given by the product of its base and its height. So, if "base" is [tex]\(b\)[/tex] and "height" is [tex]\(h\)[/tex], the formula for the area is:
[tex]\[ \text{Area}_{\text{parallelogram}} = b \times h \][/tex]
Therefore, the appropriate word to fill in the first blank is "product."
2. Area of a Circle:
The area of a circle is given by the product of [tex]\(\pi\)[/tex] (pi) and the square of its radius ([tex]\(r\)[/tex]). The formula for the area of a circle is:
[tex]\[ \text{Area}_{\text{circle}} = \pi r^2 \][/tex]
This can also be rewritten as the product of [tex]\(\pi r\)[/tex] and [tex]\(r\)[/tex], but more generally, the standard given formula is [tex]\(\pi r^2\)[/tex]. Thus, the appropriate word to fill in the second blank is also "product."
Considering these steps:
- The first blank should be filled with "product".
- The second blank should be filled with "product".
Given the multiple-choice options:
A. product, product
B. quotient, quotient
C. difference, difference
D. sum, sum
The correct choice is:
A. product, product
Therefore, inserting the words in the blanks, we get the following statement:
"Because the area of a parallelogram is equal to the product of the base and the height, the area is the product of [tex]\(\pi r\)[/tex] and [tex]\(r\)[/tex], or [tex]\(\pi r^2\)[/tex]. Therefore, the area of a circle is given by the formula [tex]\(\pi r^2\)[/tex]."
1. Area of a Parallelogram:
The area of a parallelogram is given by the product of its base and its height. So, if "base" is [tex]\(b\)[/tex] and "height" is [tex]\(h\)[/tex], the formula for the area is:
[tex]\[ \text{Area}_{\text{parallelogram}} = b \times h \][/tex]
Therefore, the appropriate word to fill in the first blank is "product."
2. Area of a Circle:
The area of a circle is given by the product of [tex]\(\pi\)[/tex] (pi) and the square of its radius ([tex]\(r\)[/tex]). The formula for the area of a circle is:
[tex]\[ \text{Area}_{\text{circle}} = \pi r^2 \][/tex]
This can also be rewritten as the product of [tex]\(\pi r\)[/tex] and [tex]\(r\)[/tex], but more generally, the standard given formula is [tex]\(\pi r^2\)[/tex]. Thus, the appropriate word to fill in the second blank is also "product."
Considering these steps:
- The first blank should be filled with "product".
- The second blank should be filled with "product".
Given the multiple-choice options:
A. product, product
B. quotient, quotient
C. difference, difference
D. sum, sum
The correct choice is:
A. product, product
Therefore, inserting the words in the blanks, we get the following statement:
"Because the area of a parallelogram is equal to the product of the base and the height, the area is the product of [tex]\(\pi r\)[/tex] and [tex]\(r\)[/tex], or [tex]\(\pi r^2\)[/tex]. Therefore, the area of a circle is given by the formula [tex]\(\pi r^2\)[/tex]."
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.