Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Rotating a point [tex]\( 90^\circ \)[/tex] about the origin transforms the point to a new location in the coordinate plane. To determine the exact transformation rule, let's analyze the given options step-by-step.
1. Rotation about the origin [tex]\(90^\circ\)[/tex] counterclockwise:
- Initially, if we have a point [tex]\( (x, y) \)[/tex], after rotation it will be moved to a new position. Specifically, for a [tex]\( 90^\circ \)[/tex] counterclockwise rotation, the point [tex]\( (x, y) \)[/tex] will transform according to a well-known geometric rule.
2. Coordinate Changes:
- The result of a [tex]\( 90^\circ \)[/tex] counterclockwise rotation around the origin changes a point [tex]\( (x, y) \)[/tex] to [tex]\( (-y, x) \)[/tex]. This can be visualized on the coordinate plane, where:
- The original x-coordinate becomes the new negative y-coordinate.
- The original y-coordinate becomes the new x-coordinate.
Given this understanding, let's match the correct transformation rule from the options provided:
- [tex]\( (x, y) \rightarrow (-x, -y) \)[/tex]: This is a reflection through the origin, not a [tex]\( 90^\circ \)[/tex] rotation.
- [tex]\( (x, y) \rightarrow (-y, x) \)[/tex]: This correctly represents the transformation resulting from a [tex]\( 90^\circ \)[/tex] counterclockwise rotation.
- [tex]\( (x, y) \rightarrow (-y, -x) \)[/tex]: This transformation does not align with the characteristics of a [tex]\( 90^\circ \)[/tex] counterclockwise rotation.
- [tex]\( (x, y) \rightarrow (y, -x) \)[/tex]: This transformation represents a [tex]\( 90^\circ \)[/tex] clockwise rotation, not counterclockwise.
Hence, the correct transformation rule that describes the [tex]\( 90^\circ \)[/tex] counterclockwise rotation about the origin is:
[tex]\((x, y) \rightarrow (-y, x)\)[/tex].
Therefore, the correct choice is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]
1. Rotation about the origin [tex]\(90^\circ\)[/tex] counterclockwise:
- Initially, if we have a point [tex]\( (x, y) \)[/tex], after rotation it will be moved to a new position. Specifically, for a [tex]\( 90^\circ \)[/tex] counterclockwise rotation, the point [tex]\( (x, y) \)[/tex] will transform according to a well-known geometric rule.
2. Coordinate Changes:
- The result of a [tex]\( 90^\circ \)[/tex] counterclockwise rotation around the origin changes a point [tex]\( (x, y) \)[/tex] to [tex]\( (-y, x) \)[/tex]. This can be visualized on the coordinate plane, where:
- The original x-coordinate becomes the new negative y-coordinate.
- The original y-coordinate becomes the new x-coordinate.
Given this understanding, let's match the correct transformation rule from the options provided:
- [tex]\( (x, y) \rightarrow (-x, -y) \)[/tex]: This is a reflection through the origin, not a [tex]\( 90^\circ \)[/tex] rotation.
- [tex]\( (x, y) \rightarrow (-y, x) \)[/tex]: This correctly represents the transformation resulting from a [tex]\( 90^\circ \)[/tex] counterclockwise rotation.
- [tex]\( (x, y) \rightarrow (-y, -x) \)[/tex]: This transformation does not align with the characteristics of a [tex]\( 90^\circ \)[/tex] counterclockwise rotation.
- [tex]\( (x, y) \rightarrow (y, -x) \)[/tex]: This transformation represents a [tex]\( 90^\circ \)[/tex] clockwise rotation, not counterclockwise.
Hence, the correct transformation rule that describes the [tex]\( 90^\circ \)[/tex] counterclockwise rotation about the origin is:
[tex]\((x, y) \rightarrow (-y, x)\)[/tex].
Therefore, the correct choice is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.