Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Rotating a point [tex]\( 90^\circ \)[/tex] about the origin transforms the point to a new location in the coordinate plane. To determine the exact transformation rule, let's analyze the given options step-by-step.
1. Rotation about the origin [tex]\(90^\circ\)[/tex] counterclockwise:
- Initially, if we have a point [tex]\( (x, y) \)[/tex], after rotation it will be moved to a new position. Specifically, for a [tex]\( 90^\circ \)[/tex] counterclockwise rotation, the point [tex]\( (x, y) \)[/tex] will transform according to a well-known geometric rule.
2. Coordinate Changes:
- The result of a [tex]\( 90^\circ \)[/tex] counterclockwise rotation around the origin changes a point [tex]\( (x, y) \)[/tex] to [tex]\( (-y, x) \)[/tex]. This can be visualized on the coordinate plane, where:
- The original x-coordinate becomes the new negative y-coordinate.
- The original y-coordinate becomes the new x-coordinate.
Given this understanding, let's match the correct transformation rule from the options provided:
- [tex]\( (x, y) \rightarrow (-x, -y) \)[/tex]: This is a reflection through the origin, not a [tex]\( 90^\circ \)[/tex] rotation.
- [tex]\( (x, y) \rightarrow (-y, x) \)[/tex]: This correctly represents the transformation resulting from a [tex]\( 90^\circ \)[/tex] counterclockwise rotation.
- [tex]\( (x, y) \rightarrow (-y, -x) \)[/tex]: This transformation does not align with the characteristics of a [tex]\( 90^\circ \)[/tex] counterclockwise rotation.
- [tex]\( (x, y) \rightarrow (y, -x) \)[/tex]: This transformation represents a [tex]\( 90^\circ \)[/tex] clockwise rotation, not counterclockwise.
Hence, the correct transformation rule that describes the [tex]\( 90^\circ \)[/tex] counterclockwise rotation about the origin is:
[tex]\((x, y) \rightarrow (-y, x)\)[/tex].
Therefore, the correct choice is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]
1. Rotation about the origin [tex]\(90^\circ\)[/tex] counterclockwise:
- Initially, if we have a point [tex]\( (x, y) \)[/tex], after rotation it will be moved to a new position. Specifically, for a [tex]\( 90^\circ \)[/tex] counterclockwise rotation, the point [tex]\( (x, y) \)[/tex] will transform according to a well-known geometric rule.
2. Coordinate Changes:
- The result of a [tex]\( 90^\circ \)[/tex] counterclockwise rotation around the origin changes a point [tex]\( (x, y) \)[/tex] to [tex]\( (-y, x) \)[/tex]. This can be visualized on the coordinate plane, where:
- The original x-coordinate becomes the new negative y-coordinate.
- The original y-coordinate becomes the new x-coordinate.
Given this understanding, let's match the correct transformation rule from the options provided:
- [tex]\( (x, y) \rightarrow (-x, -y) \)[/tex]: This is a reflection through the origin, not a [tex]\( 90^\circ \)[/tex] rotation.
- [tex]\( (x, y) \rightarrow (-y, x) \)[/tex]: This correctly represents the transformation resulting from a [tex]\( 90^\circ \)[/tex] counterclockwise rotation.
- [tex]\( (x, y) \rightarrow (-y, -x) \)[/tex]: This transformation does not align with the characteristics of a [tex]\( 90^\circ \)[/tex] counterclockwise rotation.
- [tex]\( (x, y) \rightarrow (y, -x) \)[/tex]: This transformation represents a [tex]\( 90^\circ \)[/tex] clockwise rotation, not counterclockwise.
Hence, the correct transformation rule that describes the [tex]\( 90^\circ \)[/tex] counterclockwise rotation about the origin is:
[tex]\((x, y) \rightarrow (-y, x)\)[/tex].
Therefore, the correct choice is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.